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Abstract

Most metals used in structural applications often exhibit ductile damage character-
istics, where the crack propagates through the material with accumulation of plastic
strain. Microscopically ductile damage consists of void nucleation, void growth and
void coalescence. In metal forming process, ductile damage is often a limiting fac-
tor. In this work, micromechanically motivated constitutive model proposed by
Ponte Castafieda et al. [42] (VAR) for elastoplastic porous material is used to sim-
ulate ductile damage in standard bulk forming experiments, namely upsetting test,
cylinder with circular notch upsetting test and uniaxial tensile test. The ability
of the model to predict void growth with its shape change is analysed. Also, the
influence of initial shape of the void on evolution of porosity under different stress
triaxialities are studied. Isotropic hardening laws, Thomason based coalescence cri-
teria and new strain induced void nucleation formulation are implemented to the
original constitutive equation. The results obtained from VAR model are compared
to Gurson model and other phenomenological ductile damage criteria proposed in
literature.
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Chapter 1

Introduction

1.1 Introduction

With the advancement in metal working over the last century, the use of metals in
structures have exponentially increased. However, it is observed that these structures
do not always fullfill the requirements and fail unexpectedly, resulting in monetary
losses, and more importantly causes injuries and in some cases loss of human life.
To alleviate the amount of damage, a need arises to understand these failure mech-
anisms to be able to design reliable structures.

Failures can occur due to various reasons, like uncertainties in loading or envi-
ronment, inadequate design, material defects or improper maintenance. Typically,
failure begins with formation of microscopic defects (damage) which then leads to
macrocracks and eventually to breakage (fracture). With recent technologies in ma-
terial science, it is possible to alter the microstructure of metals to strengthen them.
But, this process increases the brittleness of the material, and results in catastrophic
failures with little warning. Therefore, prediction of damage and fracture is of acute
importance to be able to avoid unforeseen incidents.

In metal forming processes, occurrence of failure determines the limit of the man-
ufacturing process. To optimize the process, it is important to understand the failure
mechanisms and the correlation between the process and material parameters in the
failure occurrence. In cold forming industry, the ability of the numerical model to
predict ductile failure is crucial. The complication arises due to very large plastic
strains, in which the damage may localize away from the maximum critical strain.
This has lead researchers to study ductile damage extensively in the last half century.
However the inadequacy of experimental techniques to investigate and quantify the
last stages of the failure process makes it difficult to validate the constitutive models.

The increasing experimental techniques and advancement in mechanics and ap-
plied mathematics, have collectively lead to development of numerical methods and
constitutive models which are capable of predicting damage and fractures. Also, the
outburst of computation capabilities, facilitates the investigation of sophisticated
real life problems. Over a period of time, various constitutive models and numeri-



cal methods have been proposed in literature. But, there is no one perfect method
which is suitable for all applications. Therefore, it is important to investigate them
closely and choose the right method based on the application needs.

Metallurgical research have shown that, microscopically, ductile damage consists
of three principal stages - void nucleation, growth and coalescence of microvoids
|61]. Macroscopically, ductile damage represents a decrease in material strength.
Extensive research have been carried out to understand ductile damage. Pioneering
work was published by McClintock et al. [50] who analysed the evolution of an
isolated cylindrical void in a ductile elastoplastic matrix to understand the role of
microvoids. Various material models have been proposed in the literature to predict
the influence of microvoids on material degradation, with some considering the load
history. The material models can be broadly classified into - phenomenological
models (Cockeroft-Latham [24], McClintock [49],[48] ) and micromechanics based
models (Gurson [38], GTN [63], Gologanu|33|, Kailasam & Ponte Castaneda [42]).
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Fig. 1.1.1: Stages in Ductile damage of a moderate ductile material [1]

The observations of Rice & Tracey |57] and McClintock et al.[50] set the founda-
tion for various micromechanics based models. Gurson [38| was the first to propose
a damage based yield criterion and flow rule, for a rigid-perfectly plastic porous
ductile material using the upper bound theorem of plasticity. Gurson based his ap-
proximation on micromechanical analysis of a thick spherical shell with a spherical
void, subjected to hydrostatic pressure, to obtain estimates for the effective con-
stitutive behaviour. The approximate yield function is a function of hydrostatic
stress which accounts for plastic dilatancy caused by the hydrostatic components
of stresses, and lead to better understanding of plastic behaviour in region of high
hydrostatic stress. The proposed model accounts for damage by a porosity term,
that progressively shrinks the yield surface. The evolution law for the porosity was
obtained from the macroscopic continuity equations by assuming in-compressibility
of the matrix phase. Gurson assumed the voids to grow spherically, hence the voids
were isotropic. This model is known to be accurate for high triaxiality, where the
porous material is expected to remain isotropic.

An alternate class of constitutive models for porous materials which accounts
for general three-dimensional loading , including void rotation, has been developed
by Ponte Castafieda & Zaidman [19] and Kailasam & Ponte Castaneda [43]|. These
methods were based on the variational (VAR) linear comparison homogenization
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Fig. 1.1.2: Material behaviour under uniaxial tensile test [70]

principles of Ponte Castaneda |[16] [17], which allows the estimation of bounds and
estimates for nonlinear composites with the given classes of microstructure in terms
of corresponding bounds and estimates for linear composites with the same classes
of microstructure, together with the estimates of Ponte Castanieda & Willis [18] for
porous linear-elastic materials with ellipsoidal microstructure. Kailasam & Ponte
Castaneda [42] proposed a general constitutive theory for nonlinear composites with
microstructure evolution as a consequence of finite strain boundary conditions. The
computational issues in implementation of this model in a FE code was dealt by
Aravas & Ponte Castaneda [4] in detail. This model gives an overly stiff predic-
tions at high triaxialities and small porosities [25]. This limitations have been dealt
with in the recent works by Danas & Ponte Castaneda [26] and Danas & Aravas [25].

Danas & Ponte Castafieda [26] made use of more accurate second order linear
comparison homogenization method of Ponte Castaneda. Danas & Aravas [25] pro-
posed a simple modification to the variational homogenization method(MVAR) for
elasto-plastic, rate independent porous materials. It was shown that the MVAR
model gave similar results in comparison to Gurson model at high stress triaxiali-
ties. These class of models have the advantage of accounting for void orientation and
rotation, which plays a crucial role at low stress triaxialities and leads to failure of
material at lower displacement values when compared to Gurson models. With the
advancement in computational mechanics and numerical methods, considerable re-
search is being carried out in the field of damage mechanics and various new models
combining different existing damage models - micromechanical and/or phenomeno-
logical ( like Zhou et. al. [71] , Cao et. al. |14]) are being proposed.

In this study, VAR micromechanical model proposed by Ponte Castaneda et al.
is scrutinized to understand the influence of various parameters in the constitutive
equation on the behaviour of the material, and to study its accuracy in predicting
damage in bulk forming processes. The material model has already been imple-
mented in ABAQUS-Explicit through VUMAT subroutine at Fraunhofer IWM and
used to simulate materials with high porosity undergoing small plastic deforma-
tions. The first part of the study is to validate the subroutine for industrial steels



undergoing large deformations (plastic strain > 1.0), to solve any numerical issues
encountered during the process, and to extend the subroutine to incorporate various
hardening laws, Thomason based coalescence criteria, and to improve void nucle-
ation under complex loading. The latter part of the study deals with parametric
analysis of the material model, and to determine its accuracy in damage prediction
by comparing the simulation results to experimental results and numerical results
obtained from other damage models (micromechanical and phenomenological).



Chapter 2

Theoretical Framework

2.1 Damage Mechanism

As described in the introduction, micromechanically ductile damage consists of three
stages - void nucleation, void growth and coalescence. In this section an overview of
these stages and the material models which describe them are provided.

2.1.1 Void Nucleation

Void nucleation can be classified into homogeneous and heterogeneous [65]. Homo-
geneous nucleation occurs within the grains and does not involve precipitation or
inclusions. Heterogeneous nucleation occurs at the second phase particles or inclu-
sions. Heterogeneous nucleation is a common occurrence in engineering materials,
as most of the engineering materials contain inclusions or second phase particles.
Voids are reported to be nucleated by tearing the inclusion from the ductile matrix
(debonding) or by cracking of the non deformable inclusion during plastic deforma-
tion. Fig.(2.1.1) shows the mechanism of void formation in Aluminum reinforced
with AloO5 particles [44].

The inclusions generally fail due to load shedding from matrix material to het-

Fig. 2.1.1: a) Debonding of Inclusion b)Cracking of Inclusion in 6061 Aluminum rein-
forced with AlyO3 particles [44]

erogeneity and leads to the formation of crack perpendicular to the applied load.



Strong interface leads to formation of crack in the inclusion and weak interface lead
to debonding nucleation. The nucleation mechanism is also influenced by many
other parameters like size and shape of inclusion, orientation of inclusion, tempera-
ture, stress state, etc [65].

Babout et al.[6] studied the effect of matrix hardness on void nucleation mecha-
nism by in situ investigation of void nucleation in Al matrix - pure Al(soft matrix)
and structural Al alloy (hard matrix). They observed that in hard matrix, void
nucleation was driven by cracking of inclusion and in soft matrix, void nucleation
was due to matrix-particle decohesion.

Various models have been proposed in the literature to predict nucleation. These
models follow a continuum based approach to model the average nucleation response
of an alloy system by determining a critical stress, strain or energy level. Gurland
and Plateau |36] were one of the first to propose an energy based nucleation model.
They suggested that voids would nucleate when the elastic strain energy that could
be released upon decohesion would be comparable to the energy of the surface to be
generated. Further Argon et. al. [5] proved that the energy criterion is only a nec-
essary condition, and the actual separation requires reaching the interfacial strength
at the interface. They proposed a phenomenological model for void nucleation by
particle matrix decohesion , where the critical interface stress can be approximated
as the sum of flow and hydrostatic stress.

I P

o, + 0,y = min(o,, 0, ) (2.1.1)
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where ot is the maximum principal stress, o

is the maximum stress that the
matrix-particle interface can undergo without decohesion and of is the particle
strength. This criterion was based on the assumption that inclusion is equiaxed and
rigid and plastically non-deformable. Also, it did not account for particle size and
shape. Various modification were proposed by Pineau et al., Lee & Mear to account

for shape effects and stress concentration factor inside the particle.

Based on the works of Gurson, Gurland [37] and Needleman & Rice [52], Chu &
Needleman 23| formulated a two parameter void nucleation criterion which approx-
imately accounts for plastic stress controlled nucleation and plastic strain controlled
nucleation. This formulation was based on statistics of particle spacing as discussed
by Gurson [38]. Needleman & Rice [52] first proposed a two parameter void nucle-
ation given by

fu=Mé& + Néy /3 = Ae?, + Bé,, (2.1.2)

where, & is the tensile flow yield stress of the matrix material which can be corre-
lated to equivalent plastic strain. If the nucleation of voids is exclusively controlled
by equivalent plastic strain, then B = 0 and if the nucleation depends only on max-
imum stress transmitted across the particle-matrix interface, as suggested by Argon
[5], an approximation can be obtained when A ~ B. Chu & Needleman proposed
formulations for the constants A & B. For the case of strain controlled nucle-



ation, they assumed that there is a mean equivalent plastic strain for nucleation ey,
and that the nucleation strain is distributed in a normal fashion about the mean.
Thus, B =0 and,

fN 1 (5@ — 5N) 2
A= —"_exp|—= | =L — 2.1.3
SN vV 2w P 2 SN ( )
Sy is the standard deviation of the distribution and fy is the total void volume nu-
cleated in consistent with the void volume fraction of the particles. By varying Sy,
a varying range of strain over which voids nucleate can be modeled. Needleman &
Rice observed that a narrow range of Sy would cause destabilizing effect. Fig.(2.1.2)

shows the effect of Sy on the void nucleation function. For stress controlled nucle-
ation, A = 0 and B is given by

fN 1 (Jeq+am_€N)2
B = exp |—— 2.1.4
SnV2m P12 SN ( )
Strain controlled nucleation is the most widely used model in the literature for
Gurson class of micro-mechanical models.
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Fig. 2.1.2: Effect of sy on void nucleation function[64]

2.1.2 Void Growth

The stress free surface of void results in stress and strain concentration in the matrix.
Increasing the plastic strain would essentially lead to void growth in the direction of
the applied load. McClintock [49] through his analysis of a long circular cylinderical
cavity in a non-hardening material, subjected to a tensile stress along the axis, pro-
posed a void growth model which showed an exponential increase of void size with
increase in transverse stress. Rice & Tracey [57]| analyzed a more realistic model
of an isolated void in a remotely uniform stress and strain rate field, to determine
the relation between void growth and stress triaxiality(7"). They derived the void
growth equation in the domain of continuum plasticity which considers separation
as a kinematical result of large but localized plastic deformations. Huang modified
Rice & Tracey formulation to better capture the void growth at low stress triaxiality



|15]. The resulting void growth rate is expressed as,

3
1.28 exp (iT) 8, for T>1

fo= (2.1.5a)

1.28 T exp GT) e for  033<T <1

Rice & Tracey model highlights the influence of stress triaxiality on void growth,
however, this model assumes that the growth rate is independent of the microstruc-
ture and the influence of the neighboring voids. Berg [50] proposed a different model
which assumed that the void growth could be described by the dilational response of
an elastic-plastic continuum containing an imaginary distribution of spherical voids.
This approach was later used by Gurson [38] to developed a dilational yield func-
tion that depends on von Mises equivalent stress and mean stress. The void growth
model proposed by Gurson is given by,

fg = (1= f)tr(e’) = (1 = f)tx(D) (2.1.6)

2.1.3 Void Coalescence

Void coalescence is the final stage in ductile failure mode. It is a sudden and rapid
phenomenon where the neighbouring voids link to form a micro crack that propa-
gates quickly and leads to sudden failure. It is a shift from homogeneous deformation
to localization of plastic deformation in the intervoid ligaments. Void coalescence is
influenced by many parameters like void shape, void orientation, stress triaxiality,
void volume fraction, etc. Based on the orientation of the ligaments between the two
coalescing voids, two types of localization can occur - Necking and Shear localization.

At low to moderate stress triaxialities, void coalescence occurs due to combi-
nation of necking and shear localization, with shear localization having a greater
effect. At high triaxialities necking predominates. Macroscopically, ligament failure
due to necking results in dimpled fracture surface, while shear localization results in
smooth fracture surface as it smeers the voids. Researchers have observed that in
various steel and aluminum, nucleation of secondary voids in the intervoid ligaments
accelerates and leads to early ligament failure even before the impingement of the
larger voids.

Weck [65] carried out an extensive study using high resolution scanning electron
microscope (SEM) to understand the coalescence mechanism in Aluminium 5052
containing holes in different orientation. He subject the plates containing holes to a
tensile load in vertical directions. Fig.(2.1.3) depicts the necking mechanism when
the holes are arranged at 90° to the tensile load and Fig.(2.1.4) depicts the shearing
mechanism.

Since coalescence is sudden and quick, it is difficult to formulate a mathematical
model that would accurately simulate the two mechanisms. Majority of the proposed



Fig. 2.1.3: Deformation sequence of aluminium alloy 5052 with holes oriented at 90°
with respect to tensile direction - Necking mechanism [65]

(d)

Fig. 2.1.4: Deformation sequence of aluminium alloy 5052 with 2 holes oriented at 45°
with respect to tensile direction - Shearing mechanism [65]

models consider the coalescence to occur when a material specific geometric param-
eter reaches a critical value. The parameters could be void shape, porosity and/or
void spacing. Tveergard & Needleman |63] proposed a phenomenological model with
the assumption that the material failure due to void coalescence occurs at a critical
value of void volume fraction(f,) in accordance to experimental and computation
results. This critical value was incorporated into the constitutive equation via the
dependence of yield function on void volume fraction(f), in Gurson type damage
models. When the void volume fraction reaches a critical, the approximate yield
function @ is modified. The yield function is of the form [63],

2
o = (Zeq> + 2f*qicosh (%) —{1+(uf)?*}=0 (2.1.7)
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The critical void volume fraction is incorporated by a new coalescence parameter f*,

f, for f < f.

R G Lt L R (2.1.8)
B fF_ fc
fr, for f > fr

Here, fr is the void volume fraction at fracture, which is obtained from the yield
function, when the stress carrying capacity vanishes,as

fr=1/a (2.1.9)

Embury proposed a geometrical model to predict the fracture of the ligament be-
tween two voids. he stipulated that when the void length is equal to the intervoid
spacing , shear bands form and the voids coalesce. The strain to failure e is defined

given by,
er=In(,/— —\/2/3+¢en (2.1.10)
6V,

Thomason [60] argued that the homogeneous deformation of a ductile material is
interrupted by the incipient of plastic limit-load condition, at which point the plastic
deformation concentrates in the intervoid matrix over a single sheet of microvoids,
which results in a ductile fracture surface. He analysed square prismatic voids in
square prismatic unit cells to obtain a closed-form empirical expression of the con-
straint factor using upper-bound methods. He claimed that replacing an ellipsoidal
void with square prismatic void would not lead to serious inaccuracy in the solution
when the void volume ratio is less than 0.2. The empirical relation is given by [60]

oM F G

= >n+<b+id)m

Y (a/b
In the above equation Y is the uniaxial yield stress, a represents half length of void,
b represents half breadth of void and (b + d) represent half breadth of the unit cell.
F and G are constants, n and m are exponents. Thomason proposed the following
values , '=0.1, G =12, n =2 and m = 0.5.

(2.1.11)

Thomason’s model is a close approximation of necking mechanism, and is widely
used in the literature. It was later modified by various authors (|56], [9], [21], [58]).
Pardoen and Hutchinson derived an empirical relation for a cylindrical unit cell con-
taining spheroidal void, as shown in Fig.(2.1.5). They considered a cylindrical disk
of elastic-perfectly plastic material welded to rigid platens and constrained against
flow at the outer radius. An approximation of limit load for this configuration in
terms of average normal stress o,, was derived in line to Hill’s Plane strain analysis
of a thin plastic layer welded to and squeezed by two rigid platens. The localisation
is assumed to set in when,

10
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Where, void aspect ratio w is defined as,
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Fig. 2.1.5: Representative Volume Element with geometric parameters, symmetry lines,
and boundary conditions [56]

When the initial aspect ratio(Ag) of the unit cell is 1, the distance between the
ligaments(x) in terms of equivalent plastic strain is given by,

) A /3
y = R - (éf_) ., where \=exp (§5§q) (2.1.14)

w 2

For flat voids (W — 0), the developed model predicts infinite ductilities. To over-
come this drawback, Benzerga introduced a quadratic equation in the denominator
based on the unit cell results of Golaganu.

Tn 1 -] [a ( X -1 )2 + 1.3X—1/2] (2.1.15)

oy w? 4+ 0.1xy~1 4 0.02x 2

The plastic limit load criterion requires knowledge of the void aspect ratios w, spac-
ing ratios xy and the maximum tensile stress transverse to the ligament. In 3D case,
a plane exists that is traverse to the ligament and the stress will vary within this
plane. The maximum tensile stress in this plane must be determined to evaluate the
plastic limit load criterion [22]. Constitute models have been proposed by Chen|[22]
and Scheyvaerts|58| for the case where voids do not align themselves in the direction
of maximum principal stress. Chen|22| proposed a procedure for modeling an arbi-
trary ellipsoidal void as an axisymmetric void. Consider an arbitrary ellipsoidal void
with semi-axes a,b and ¢ with corresponding vectors ni, ny and ng. The distance

11



from the center to void surface along the principal loading direction is denoted by
R;. A line-projection of the void is taken with the principal loading direction as the
viewing direction to obtain an ellipse with semi-axes Ry and R3. The reconstructed
geometry of the void is as shown in Fig.(2.1.6) and the equivalent aspect ratio as
proposed by Chen is,

Ry

(2.1.16)

'erq ==
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R_K
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Fig. 2.1.6: Procedure for modelling an arbitrary ellipsoidal void as an axisymmetric void
[22]

In VAR model, the semi-axis ¢ and its corresponding vector ng is aligned to the

loading direction. Hence the equivalent aspect ratio would be defined as,

C

S 2.1.17
Weq NG Vwws ( )

For an ellipsoidal void, the inter distance between the ligaments x can be obtained
by substituting Eq. (2.1.17) in Eq. (2.1.14).

3 f 3 .\\"*
Xeq = (§weq exp <§6eq)) (2118)

2.2 Overview of damage models

The damage models can be broadly classified into:
1) Phenomenological models

a) Uncoupled damage models

b) Coupled damage models

2) Micromechanics based models

12



2.2.1 Phenomenological models

The phenomenological models can be further categorized into uncoupled damage
models and Continuum damage mechanics (CDM) based coupled damage models
[15]. In the former approach, failure is predicted to occur when an external variable
reaches a critical value without interacting with the constitutive equations. Un-
coupled models are easy to implement in an FE software but are not accurate for
complex loading conditions and large strains. In the latter approach, the effect of
void growth on material behaviour is incorporated by introducing an internal dam-
age variable in the constitutive relation. Void nucleation can also be incorporated
by modifying the damage growth law. Lemaitre [48] and Chaboche [20] developed
CDM models based on a thermodynamic framework. But, Lemaitre based models
were observed to predict the maximum damage locations inaccurately for shear dom-
inated loading. Various extensions have been proposed to these models to increase
its efficiency.

2.2.1.1 Uncoupled damage models

Uncoupled damage models, also referred to as damage criteria, implicitly assume
that the state of damage of a structure does not influence the state of stress or
strain of the material. These models were physically motivated and purely phe-
nomenological. The damage parameter is computed using an integral of a stress
state function, which is strain path dependent or independent, based on the model.
It takes the general form,

Ef
deP d p = 2.2.1
/0 f(o)de?, or / f(e)der (2.2.1)

s is the equivalent plastic strain just at the moment of fracture and D, is the
material constant that defines the onset of fracture. Cockcroft-Latham proposed a
criterion based on the tensile strain energy density considering the magnitude of the
highest normal tensile stress ¢,,,., given by

Ef
Dc:/0 amaxdsﬁq (2.2.2)

Cockcroft-Latham damage model is often used to predict the initiation of crack and
is widely used bulk forming industry. The normalized Cockecroft-Latham damage
criterion is defined as,

D.= /Um‘”dp (2.2.3)

McClintock proposed a model which also included the minimum principal stress and
the hardening parameters. According to McClintock

V3 . V3 o1+ oy 301 — 09
(o) = 5y sinb (2(1—n) Oeq >+Z Oeq
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Rice & Tracey based their damage model on stress triaxiality,

(o) = exp GT) (2.2.5)

Johnson & Cook [41] proposed a damage model which accounted for path depen-
dency by accumulating damage as the deformation proceeds. The damage indicator
depends on strain, strain rate, temperature and pressure.

1
Ef

where €* and t* are dimensionless strain rate and homologous temperature respec-
tively.

flo)=—=, & =[C1+ Cyexp(CsT)][1+ Cyln(e)] [1 + Cst’] (2.2.6)

The uncoupled damage models are easy to implement in a FE program and re-
quires minimal computation power. Since they do not influence the material prop-
erties, the accuracy of the results are questionable. Their major weakness is the
application to complex loading paths outside the identification zone.

2.2.1.2 Coupled damage models

For complex loading paths, such as non-proportional loading or anisothermal, stress
distribution and stress triaxiality changes enhanced by the damage is an accelerating
factor in structural failure. Close to the rupture condition, the error from uncoupled
constitutive equations are in the order of 10 -50% [47|. To predict the damage accu-
rately the continuum equilibrium must be solved in a fully coupled manner with the
damage parameters. From physical point of view, this coupling is due to the nature
of damage. Damage results in decrease of elasticity modulus, density and plastic
strain-hardening. The basic constituents of these damage models are,

1) an equation relating the damage variable and apparent stiffness
2) a loading function specifying the elastic domain
3) a law governing the evolution of damage variable

Lemaitre [47| proposed a continuum based coupled damage model which was de-
rived from a thermodynamic framework. He assumed a scalar damage variable
D(0 < D < 1) which describes isotropic damage as internal variable. D represents
the surface density of interaction of micro-cracks and micro-cavities with any plane
in the body. The criterion for micro-crack initiationis D = D, , D, is of the order 0.2
to 0.8 depending upon the material. He derived the state laws of the state variables
as well as the dissipation phenomenon from a convex thermodynamic potential ¢ of
the form,

Y =1(et,a,p, D) (2.2.7)
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«a and p are are the internal variables associated with anisotropic hardening X and
isotropic hardening R respectively. The effective stress o’ is defined as,

! = 2.2.8
=717 (2.2.8)
The elasticity law is given by,
oy
- 2.2.9
T =P (2.2.9)

The thermodynamic potential defines a variable Y associated with D, which is anal-
ogous to elastic strain energy.

o2 2
V=—n-—2__12(1 3(1 —2v)T? 2.2.10
The evolution equations of the internal variables are obtained from Clausius-Duhem
inequality. The evolution equation of the damage variable is given by,

S0 A
p=i2®_ <_—Y) A (2.2.11)
aY So 1-D
So and sq are temperature dependent material constants , which must be identified
for each type of damage. It is also important to note that the standard Lemaitre
model is symmetric with respect to stress state. Lemaitre model is being continu-
ously investigated and various modifications are proposed to improve its accuracy
under shear loading.

2.2.2 Micromechanics based damage models

As described in the introduction, these models are based on microstructure consid-
eration. The influence of ductile damage in the yield condition is taken into account
by introducing the porosity term and mean stress in the yield function. Von Mises
plasticity model is independent of mean stress and predict plastic incompressibil-
ity and therefore could not show the dilatancy evident in porous ductile materials.
Here a short overview of Gurson model is described, as the results from VAR model
would be compared to Gurson model in later sections. Gurson [38| proposed the
yield function to be of the form,

2
e 3 m
P = (2) + 2f cosh (L) —1-f? (2.2.12)
oy 20y

The evolution equation of the void volume fraction is obtained from continuity equa-
tion as,

fo= 0= f)ék (2.2.13)
Several extensions and modifications (Tvergaard & Needleman |63] , Gao et al. |32])
were proposed to the original Gurson model to improve its accuracy and to simulate
the complete damage process by accounting for interaction, nucleation and coales-
cence of voids. Tvergaard [62] introduced 3 constants (i, g2 and ¢3) in the Gurson
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yield function to account for interaction between neighboring voids based on analysis
of a material containing a doubly periodic array of circular cylindrical voids under
plane strain conditions. Chu & Needleman |[23| incorporated two parameter void
nucleation which allows for plastic strain controlled and stress controlled nucleation
to be modeled. Tvergaard and Needleman [63] later proposed a modification to cap-
ture the rapid deterioration of stiffness after localization. This model is generally
referred to as Gurson-Tvergaard-Needleman (GTN) model in literature. The Gurson
class of models are proved to be inaccurate for low tri-axiality loading conditions
and shear dominated models, where the void growth mechanism is inactive. Xue
[69] and Nahshon & Hutchinson [51| proposed a phenomenological modification by
including the effect of third stress invariant in GTN model to improve it’s accuracy
under shear loading. However, this model was proved to over predict the damage
under high stress triaxialities conditions, which was an advantage of the original
Gurson model. Consequently, Nielsen and Tvergaard [53| proposed a modification
to Nahshon-Hutchinson model, to allow for damage accumulation under shear load-
ing to be active only for low stress triaxialities [30]. A recent shear modification for
Gurson class model was proposed by Zhou et. al. [71] by combining damage me-
chanics concepts of Lemaitre with the GTN void growth model. But the proposed
modifications did not account for void shape or void orientation, which would be
key to accurately predict damage under complex loading conditions.

Tvergaard & Needleman|63| modified the Gurson yield function to take the form,

2
@:(Eﬁ%ﬂmﬁwme%h)—bw#” (2.2.14)
g

Oy y

They suggested the constants qi, g2 and g3 to take the values 1.5, 1.0 and ¢? respec-
tively, and f* is the critical coalescence parameter as described in Eq. (2.1.8) in
section 2.1.3. Gurson yield function could be obtained from the above equation by
setting the constants to unity. The evolution of void volume fraction is given as,

f=tut 1y (2.2.15)

Gologanu, Leblond & Devaux [33||34] porposed (GLD model) a Gurson based
constitutive model which accounted for void shape effects by considering a perfectly
plastic material with aligned spheroidal voids subjected to axisymmetric loading
condition. Several extensions have been proposed for this class of models to ac-
count for ellipsoidal voids , final void coalescence and void rotations. Pardoen and
Hutchinson [56] combined GLD model with Thomason [60] coalescence model to
accurately predict the formation of crack prior to existence and the crack growth
after formation. Recently, Schevyaerts |58| proposed a modification to account for
void orientation and void rotation by introducing a new state variable to account
for void rotation based on the work of Kailasam and Ponte Castaneda [43]. But,
this model was proved only for plane strain simple shear conditions.

Based on type of nucleation model, i.e. stress dependent or strain dependent
nucleation, corresponding formulation from Section 2.1.1 should be used for f,,, and
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f, is as given by Eq. (2.2.13). Fig.(2.2.1) shows the yield locus of a von Mises yield
function and Gurson yield function. It can be seen that as the porosity increases, the
yield locus shrinks due to which the stress carrying capacity of the material reduces.
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Fig. 2.2.1: Comparison of Yield surface of von-Mises plasticity and Gurson model (at
different void volume fraction)

2.3 Theoretical Background

2.3.1 Stresses and Strains
2.3.1.1 Hydrostatic and Deviatoric Stresses

Any state of stress can be additively decomposed into hydrostatic stress (mean
stress) 0,1 and deviatoric stress s. In index notations it is given by [2],

Oij = O'méij + Sij (231)
o =07 0§2 o3 (2.3.2)

The hydrostatic stress accounts for pure tension or compression and it remains un-
changed with a change in coordinate system. While, deviatoric stress accounts only
pure shear and the principal direction of stresses coincides with the principal direc-
tions of the deviatoric stresses. The deviatoric stress invariants are given by,

Ji = 511+ S22 + S33
2 2 2
Jo = — (511522 + S22533 + S33511 — ST9 — S35 — S31)
2 2 2
J3 = 511522833 — 811593 — S22837 — 833579 T 2512523531

The second invariant can also expressed in terms of principal stresses as,

J2 = [(0’1 — 0'2)2 + (0'2 — 0'3)2 + (0’3 - 0’1)2} (2.3.4)

=
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Stress triaxiality under different loading conditions [46]
Loading 2D-Plane stress 3D
Uniaxial Tension 0.33 0.33
Uniaxial Compression -0.33 -0.33
Biaxial Tension 0.66 0.66
Biaxial Compression -0.66 -0.66
Triaxial Tension - 00
Triaxial Compressio - -00
Pure Shear 0 0

Table 2.3.1: Stress triaxiality observed under different loading conditions

2.3.1.2 Equivalent Stress

Equivalent stress or von Mises stress is a stress at which yielding is predicted to oc-
cur in isotropic ductile materials. It is derived from the distortion-energy theory for
ductile materials which states that yielding occurs when the distortion strain energy
per unit volume reaches or exceeds the distortion strain energy per unit volume for
yield in simple tension or compression of the same material. In deviatoric stress
space the equivalent stress is given [2],

3
Teqg = 1\ 38i8= 3J5 (2.3.5)

In terms of non principal stress components and principal stresses,

Oeq = L [(0'1 — 0'2)2 + (0'2 — 0'3)2 + (0'3 — 0'1)2]

V2

Oeq = —f5 [(U:c —0,)* + (0, —0.)" + (0. — 0.)* + 6(75331 + T;z + TZZx)]

1/2

1/2

2.3.1.3 Stress Triaxiality

A material’s strain and ductile fracture strongly depends on the existing state of
stress in individual areas of the material. In most general case, the state of stress
is determined by the 6 stress components or 3 principal stresses. Using the state
of stress tensor to identify unequivocally individual stresses during shaping process
is cumbersome. As a practical approach, stress triaxiality (7") is used to identify
the state of stress and is defined as the ratio of mean stress to equivalent stress [2|.
Stress triaxiality is varied over a wide range covering most practical situations.

Om

T =

2.3.7

o 23.7)
The effect of stress triaxiality on metals is strong and has been widely documented.
Higher the triaxiality lower the fracture strain. Higher levels of stress triaxiality are
achieved in cracked specimens with the maximum expected to be around 3.0 ahead
of the crack tip of a strain hardening material under plane strain condition |10].
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Fig. 2.3.2: Dependence of equivalent strain to fracture on stress triaxialities for aluminum
alloy 2024-T351 [7]

2.3.1.4 Equivalent Plastic Strain

To account for hardening, a quantity that describes the deformation history of a
material which increase during plastic deformation, is required. Equivalent plastic
strain is most widely used quantity in this regard. For an isotropic, von Mises ma-
terial, the equivalent plastic strain £, is derived from equivalent plastic strain rate

52(1 which is defined analogous to von Mises yield criterion as [2],
Eeqd = gé’-’-é’-’- (2.3.8)
The equivalent plastic strain is the integral of the equivalent plastic strain rate,
t
e, = / eb,dt (2.3.9)
0

19



2.3.1.5 Objective stress rates

A fundamental axiom of constitutive theory is the principal of material objectivity
which states that a physical quantity is objective if it is independent of an observer.
A quantity is said to be objective if it satisfies the following condition [11],

Tensor: A* = QAQT
vector: u* = Qu
scalar: a*=a

*

where, @ is a rotation tensor, the components ( )* are in a rotated frame. Cauchy
stress tensor (o), Kirchhoff stress tensor (7) and second Piola-Kirchhoff stress ten-
sor (S) are material objective stresses. But, the rates of objective stress tensors are
not necessarily objective. The material time derivative of Cauchy stress tensor (o)
is not objective, and is given by

6=Q6Q" +QoQ" + Qo Q" (2.3.10)
In order to ensure material objectivity in the formulation of finite strain constitutive
equations which depend on stress rates, it is important to define objective stress
rates. They are obtained by suitably modifying the material time derivative. Many
different objective rates of stress are proposed in the literature depending on the
choice of rotation tensor. Jaumannn rate and Green Naghdi rate are used often in

. . . VY .
constitutive equations. Jaumann rate of Cauchy stress (a’) is defined as [13],

o=6-Wo+oW (2.3.11)
where W is the skew-symmetric part of velocity gradient known as spin tensor.

W = Lgew, L=FF! (2.3.12)

Green-Naghdi rate <§) is obtained by pulling back o to reference configuration,

taking the material time derivative of o in reference configuration, and pushing for-
ward the derivative to deformed configuration [27].

& =0—Qo+oQ (2.3.13)

where € is the skew symmetric tensor which depends on the rotation tensor R,
given by,

Q= RR" (2.3.14)

2.3.2 Theory of Rate independent Elasto-Plasticity

The theory of plasticity provides a general framework for the continuum constitu-
tive description of the behaviour of materials which undergo permanent (plastic)
deformation. The theory deals with the calculation of stress and strain in plastic
deformations, and not, as a literal interpretation suggests, the physical description
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of plasticity. There are two major outcomes of the theory - first, to develop explicit
relation between stress and strain to agree with the experimental observations, and
second, to develop mathematical techniques to compute non uniform distribution of
stress and strain in a plastically deformed body [40]. This theory is restricted to
materials where the permanent deformation does not depend on the rate of loading,
and is often referred to as rate independent theory of plasticity.

In case of elastic constitutive equation the stress o depends only on the strain e
and not on the history. But in case of Elasto-Plastic constitutive material models,
the stress also depends on the past history. Hence, additional variables know as
internal variables or plastic internal variables g are introduced in to the constitutive
equations. When the evolution of plastic strains is zero, the internal variables do not
evolve. A classical rate independent Plasticity constitutive model has the following
basic components:

a) Decomposition of the elastoplastic strain

b) Elastic stress-strain relation

c¢) a yield surface, which defines the elastic domain

d) a plastic flow rule defining the evolution of the plastic strain
e) a hardening law

f) loading/unloading condition

g) consistency condition

2.3.2.1 Additive decomposition of Strain tensor

It is assumed that the strain tensor can be decomposed in to the elastic €¢ and
plastic P strain tensors. |2]

e=¢e“+¢f (2.3.15)

The elastic strain tensor from the above equation can be written as €¢ = € — &P.
The corresponding rate form of the additive split is given as,

€ =¢+éf (2.3.16)

From computational point of view, the incremental form is also very important. The
incremental form of the strain tensor is given by,

de = de® + de” (2.3.17)
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Fig. 2.3.3: Uniaxial tensile stress strain curve of a linear isotropic hardening material with
strain decomposition
2.3.2.2 Elastic Stress strain relation

The stress tensor o is related to the elastic strain €° by means of a stored en-
ergy function W. For a linear elastic material , the energy function is given by,

W:§€e : C : eg°. Here C is the elastic modulus. The stress-strain relation is given
by [2],
o=C(e—¢gP) (2.3.18)

In incremental form, it is given by
do = C(de — de?) (2.3.19)

2.3.2.3 Yield Criterion and Yield Surface [2]

Plastic flow would occur when the stresses attain a certain critical value. This criti-
cal value is defined by the yield function ®. The yield function is negative when the
material deforms elastically , and reaches zero when plastic flow is imminent. The
plastic flow occurs when,

®(o,q) =0 (2.3.20)

Any stress lying in the elastic domain or on its surface is know as plastically admis-
sible domain, which is given by,

& ={o|®(o,q) <0} (2.3.21)

The yield surface gives the set of stresses for which plastic yielding may occur, and
it defines the boundary of the elastic domain.

2.3.2.4 Plastic Flow Rule [2]

The flow rule defines the magnitude and direction of the plastic strain increment
deP for a given increment of all stress components during yielding. The direction of
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Fig. 2.3.4: Yield Surface [2]

the plastic flow is determined by the normality rule which states that deP is normal
to the yield surface at the point. The flow rule is usually defined in terms of non
negative, convex flow potential ¥, which is assumed to take the form,

U =VY(o,q) and v(0,0)=0 (2.3.22)

The flow vector R is defined as the derivative of the flow potential with respect to
stress tensor o,

ov
R= e (2.3.23)

Models which use yield function as the flow potential ,i.e., ¥ = ®, are called asso-

Fig. 2.3.5: Geometrical interpretation of normality rule [2]

ciative plasticity model. Most of the ductile materials can be defined by associative
plastic models. The flow vector in this case is given by,

00

N =54

(2.3.24)
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The plastic flow rule relates the evolution of plastic strain to the flow vector,

& = AN (2.3.25)
de? = dAN (2.3.26)

Where A is know as plastic multiplier or the consistency parameter. It provides
means to determine the amount of plastic flow and hardening such that the condition
® = 0 is conserved.

2.3.2.5 Hardening Law |[2]

Due to plastic straining, the resistance of the material to plastic flow increases.
Which implies that the size and shape of the yield surface changes due to plastic
loading. Practically this change is arbitrary and is difficult to describe accurately.
Hardening is often described by two types of hardening, isotropic hardening and
kinematic hardening. In case of isotropic hardening the yield surface retains its
shape but only increases in size. But, in case of kinematic hardening the yield
surface retains its shape and size, merely translates in stress space.

The hardening law defines the evolution of the hardening variables. It relates the
evolution to a hardening modulus H.

g=AH (2.3.27)
Isotropic Hardening Kinematic Hardening
A
g o A
Subsequent
Subsequent Yield Surface

Yield Surface

Initial
\\ Yield Surface
~

‘‘‘‘‘‘

Fig. 2.3.6: Change of yield surface during Isotropic and Kinematic Hardening [2]

2.3.2.6 Loading/Unloading and Consistency Condition

The plastic multiplier A introduced in the flow rule, is assumed to be a non negative
parameter. And, for any stress to be admissible, its absolute value must be less
than or equal to the yield stress. These conditions impart the following unilateral
constraints,

A>0 (2.3.28a)
® <0 (2.3.28b)
Within the elastic domain (® > 0), the increment of plastic strain is zero, which

implies A = 0. And, on the yield surface (® =0), éP # 0, which implies A > 0. This
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leads us to the additional constraint,

A® =0 (2.3.29)
Eq. (2.3.28) and Eq. (2.3.29) together are know as the Kuhn-Tucker condition.

An explicit equation for determination of the plastic multiplier has not been
introduced yet. As stated above the plastic multiplier vanishes during elastic strain-
ing. But, during plastic straining it can assume any non-negative value. Taking a
derivative of Eq. (2.3.29), we obtain,

A® =0 (2.3.30)

Eq. (2.3.30) is referred to as consistency condition in literature. Additionally, on
the yield surface, the plastic multiplier is non-zero. Hence,

®=0 (2.3.31)

2.3.3 Finite Strain Plasticity

An extension of the infinitesimal theory of plasticity to large strain is not straight
forward, and a number of alternative formulations have been proposed. These formu-
lations can be classified in to hypoelastic-plastic model and the hyperelastic-plastic
models. In hypoelastic based constitutive formulations, the standard infinitesimal
elastoplastic models are extended to the finite strain range by reformulating the
original evolution equations in terms of suitable objective strain rates. In these for-
mulations basic questions about proper kinematic description of plastic flow, char-
acterization of elastic behaviour and choice of adequate stress and strain measures
arises. Also, special care must be exercised to preserve the fundamental principle
of objectivity of the integration algorithm. This lead to the development of ob-
jectively incremental algorithms which add significantly to the computational cost
of the analysis. Hyperelastic models were developed to overcome the drawbacks of
the former. It is based on hyperelastic description in conjunction with multiplica-
tive decomposition of deformation gradient. In these models, the requirement of
incremental objectivity is trivially satisfied. Of late, hyperelastic formulations are
gaining wide spread acceptance and have been proven successful for wide range of
applications |27].

2.3.3.1 Hypoelastic - Plastic Models [27]

In this section a brief overview of hypoelastic-plastic formulation is provided, as the
constitutive model discussed in later sections is based on the same. A large class of
hypoelastic materials is encompassed in the linear relation between objective stress
rate & and rate of deformation D,

Qo
Il
Qo
)

(2.3.32)



C is the corresponding forth order elastic moduli which depends on the stress and
must be an objective function. In a hypoelastic-plastic model, the rate of deforma-
tion is additively decomposed into elastic and plastic components,

D = D°+ DP (2.3.33)
The elastic response is,

o=C:(D-D" (2.3.34)

The plastic flow rule is given in terms of the plastic rate of deformation,

. 0D .
D?P =A—=AN 2.3.35
o ( )
The consistency condition,

. 0D 0P
b=—:0+—.4 2.3.36
oo 7 g1 (2.3.36)

. 0 /o oo .

== <0' T Wo — aW> g (2.3.37)

For an isotropic model, the product of & and 09 /0o are commutative. Also, con-
sidering the symmetry of o, and skew-symmetry of W, it can shown that,

g—f :(Wo—oW) =0 (2.3.38)

Hence the consistency condition reduces to,

b . 0D

H=_": -, 2.3.
- 0'+8qq (2.3.39)

For detailed explanation on Hypoelasticity and hyper-elasticity, please refer [27].

2.3.4 Mechanics of Heterogeneous Materials - A brief overview

At a certain (smaller) length scale, all real materials appear inhomogeneous, i.e.
they consist of distinguishable phases. These phases may be cracks, voids, particles,
grain boundaries, fibres in a laminate, irregularities in a crystal lattice, etc|35]. Each
phase exhibits different mechanical properties and orientations [45]. The length scale
at which a material is considered inhomogeneous is not explicit, it depends on the
material and its application. For example, concrete and wood exhibit inhomogeneity
at a larger scale in comparison to high strength steel, whose properties are governed
by a complex microstructure at a much smaller scale. Mechanics of heterogeneous
material deals with the micromechanical study of the behaviour of each phase and
its influence on overall properties of the material.
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2.3.4.1 Homogenization and Representative volume element (RVE)

For a certain microscopic volume of the material, the heterogeneous microstructure
can be considered macroscopically as homogeneous, with spatially constant effective
properties, which accounts for the microstructure in an averaged sense. This micro-
to-macro transition is know as homogenization[35]. The effective properties of the
homogenized material are obtained from various micromechanical material models
like Voigt and Reuss, Self Consistent, Dilute Distribution, and Hashin- Shtrikman.
The volume at which homogenization has been introduced, is known as Represen-
tative Volume element (RVE) in the literature. It is an average representation of
the entire material - structurally and statistically. An RVE has to be statistically
homogeneous, i.e. any arbitrary volume of the microstructure with the same di-
mensions of an RVE should lead to the same macroscopic properties. To effectively
apply the concept of an RVE, one of the requirement is the existence of two length
scales - a macroscopic length scale L, that defines the infinitesimal vicinity, and the
microscopic length scale [, that characterizes the smallest significant dimension of
the micro-heterogeneity [29]. The ratio of the length scale is given by L/l >> 1.
The size of an RVE must be much greater than the characteristic length of the inho-
mogeneity, but should be smaller in comparison to the macro scale. Hence it must
satisfy the condition,

l<<d<<L (2.3.40)

The assumption of statistical homogeneity allows the isolation of an RVE [45].

| (microstructure)
—

S— ///" R : (@ d (RVE)
6‘4\1\: =i Sl i (homogenization)
L ‘ h h ‘

.Macro

xxxxxxxx

Fig. 2.3.7: Homogenization and Length scale [35]

There exists a definitive surface displacement and surface tractions on the boundary
of an RVE, and definitive stress field and strain field with in the RVE. The mechan-
ical behaviour of the effective homogenized material is described by a constitutive
law, which is obtained from the detailed fields of the RVE through an averaging
procedure. When the macroscopic homogeneous stress and homogeneous strains are
applied on the RVE of volume V', the average stress and average strain is defined
as|8],

1
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1

Average Stress and Average Strain Theorem

To obtain the locally distributed stress and strain fields in the RVE, we have to solve
the microscopic boundary value problem with suitable boundary conditions|29] ,

dive =0 (2.3.43)

A homogeneous strain field can be produced by applying linear displacements on
boundary S and a homogeneous stress field can be obtained by applying a traction
tia

ui(S) = gy (2.3.44)
ti(S) = opn; (2.3.45)
where, 5% and J?j are constant homogeneous strain and stress respectively.
The average strain theorem states that the macroscopic strain (volumetric average)
is equal to constant homogeneous strain applied on the boundary.

= _ -0

(2.3.46)

Analogously, the average stress theorem states that the macroscopic stress (volu-
metric average) is equal to the homogeneous microscopic stress at the boundary.

Gij = 0y (2.3.47)

Hill Condition

The underlying principal in most of the analytical models which predict the homoge-
nized macroscale response of heterogeneous material in small strain linear elasticity
framework, is the Hill condition. It states that the averaged macroscopic strain
energy density is equal to microscopic strain energy density in an RVE |29].

(0-e)=65-& (2.3.48)

2.3.4.2 Inclusion and Eshelby Tensor

Consider a homogeneous linear elastic solid of volume V' and surface S with elastic
constant Cj;; as shown in Fig.(2.3.8). The sub region V' would exhibit a stress free
permanent deformation &, if not for the constraints imposed by the surrounding
material. Then the material in the V' is known as inclusion and the material in €2 is
known as matrix. It is to be noted that the inclusion and the matrix are associated
with the same elasticity, if the elasticity are different, then the material in V' would
be know as inhomogeneity. The stress free strain £j; is also known as eigenstrain.
The eigenstrain in the matrix is equal to zero and is non zero in the inclusion.

For infinitesimal deformation in linear elasticity, the total strain is the sum of elastic
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strain and eigenstrain,

€ij = €5+ &5 (2.3.49)

)

L0

0Q

Fig. 2.3.8: Inclusion and Matrix [66]

Eshelby [31] proposed a method to solve the elastic state of ellipsoidal inclusion
and the matrix with the help of a set of imaginary cutting, straining and welding
operations. He used the superposition principal of linear elasticity. The procedure
the author used is as follows,

Step 1: Remove the inclusion from the matrix, and allow it to undergo the stress-free
strain €;. The stress, strain and displacement in the matrix are zero at this
stage, and the stress in inclusion is zero. The strain and displacement in the
inclusion are given by,

Eij = € and  u; = gjz; (2.3.50)

Step 2: Apply the surface traction —o;n; to 9V, to bring back the inclusion to its
original shape. The Eigenstress is given by Hooke’s law,
0;; = Cijucy; (2.3.51)
Now reweld the inclusion into the matrix. The surface force becomes a layer
of body force.

Step 3: To relax the body force, apply a traction of +o7;n; to V. Now the body is free
from external force but is in a state of self-stress. Let ug; be the constrained
displacement due to afore mentioned traction. This can be expressed in terms
Green’s function of a elastic body.

To obtain the stresses and strains in the entire body, the constrained field must
be determined. The constrained strain is nothing but the total strain inside the in-
clusion and the matrix. The constrained strain in the matrix or inclusion is given by,

c __

(g + us,) (2.3.52)

DN | —
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The stress in the matrix is derived from Hooke’s law as,

O'icj = ijklfil (2353)
Eshelby’s tensor S relates the constrained strain in the inclusion to eigenstrain,
Where, S;j; is referred to as Eshelby’s tensor. It satisfies minor symmetries, but it
does not satisfy the major symmetry.

Sijkt = Sjirt = Sijik, but Sijkt 7 Skiij (2.3.55)
The stress in the inclusion is given by,

0i; = Cijui(€y — €kt) (2.3.56)

Eshelby|31] derived the components of S in terms of elliptic integrals of first and
second kinds of amplitude and modulus for an isotropic material with ellipsoidal
inclusion. Let the semi axes of the inclusion be a,bandc which is aligned with
material coordinate axis x,y and z and assume that a > b > c.

S = Qa’l,, + R,
Sii99 = Qb I, + RI,,
Siizs = Qc*l,. + RI,,
1 1
51212 = Q (Cl + b2) ab + R ([a + [b),

2
S1112 = S1223 = S1232 = 0

3 1—2v 1 1
Cawion Taa-a 0T G
4mabe
[a = (0,2 _ bz)m (F(‘97 k) - E(97 k))
I 4drabe (b\/a2 — 02 B, k))

p2 — 2)a2 — 2
1

[a? — b?
6 =sin~! —p R
PO, k) /
1 — k2sin®w

E0,k) = / V1 — k2sin® wdw
0

I, + I, + I, = 4,
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47

[aa [a Iac = 5 9
+ lgp + 302

azlaa + b2]ab + Cz]ac = Iav

Ly=4r -1, — 1.

I, —1,
Ia = 57 9 1o\
"7 3(a? — 1?)
4
[aa:—_[a _Iac
3a? ’

The other non-zero components of the Eshelby tensor S and other components
of I;; are obtained by cyclic permutations of the above formulas.

Eshelby also proposed a relation for uniform rotation W€ in the inclusion in
terms of eigenstrain and Eshelby’s rotation tensor 11,4,
Wé = Hijklgzl (2358)
The rotation tensor II;j;; determines the spin of an isolated void in an infinite lin-
ear viscous matrix. The rotation tensor is symmetric with respect to the first two
indices and skew-symmetric with respect to the last two. Also, the only non-zero
components are H1212, H2323 & H3131.

Ia - Ic
8T
The above formulas for computation of Eshelby tensors are valid only when the axes
of the coordinate system are parallel to the principal axes of the ellipsoid|31]. For
any other system, the new components of the tensors have to computed using the
general transformation laws.

H3131 — —H1331 — (2359)

2.3.4.3 Hashin-Shtrikman variational principal and bounds

As pointed out in the previous subsection, the effective properties of a material can
be derived using different analytical methods. The effective property is not unique,
as each analytical method leads to a different solution. It is important to know how
good the obtained effective properties are. One way to reduce the space of possible
solution is to obtain the bounds in which the properties could possibly lie. The
variational bounds are obtained from the principal of minimum potential. Hashin-
Shtrikman bounds are much narrow in comparison to other bounds like Voigt and
Reuss. In this study, we restrict ourselves to Hashin-Shtrikman varational principal
and bounds, pertaining to its usage in the constitutive model.

In this approach an appropriate auxiliary field which represents the deviation
from a reference solution is considered to derive the bounds as opposed to other
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methods where the total stress and strain fields are considered. This allows for
more accurate approximations. A possible auxiliary field would be stress polariza-
tion 7(z). It describes the deviation of the true stress in a heterogeneous material
0ij = Cijmew from the stress that would results when the true strain e4; acts on the
homogeneous comparison material [35].

@) = {C(z) — C’}e(x) (2.3.60)

where, C° is the elastic constant of the homogeneous comparison material. The
strain () can be expressed in terms of fluctuation strain € which is defined as,

E=ec—¢ (2.3.61)

The stress difference is then defined as,

6=0—-0"=C(z)e — C°x)e° (2.3.62)

The difference field must satisfy the governing equation,

5-ij,j - 0, ’ai‘av == 0 (2363)

The polarization is then given by,

@) = {C(x) — C°}: {e’ + &} (2.3.64)

The solution to the governing equation Eq. (2.3.63) can be formally written as
€(7(x)). This gives the equation for 7(x) which depends on macrostrain,

—{C-CY':iTr+E(T)+€"=0 (2.3.65)

The above equation is equivalent to the Hashin-Shtrikman variational principle given
by [35],

F(?) = % /V{—+ (C—-C) iR+ E(R)+27: €%V =0 (2.3.66)

To obtain the effective properties é’, the stationary value of the above functional
has to be computed. The stationary value is obtained to be,

F(r)=¢": [é’ - CO} (2.3.67)
F(7) is maximum if (C — C") is positive definite and minimum if (C — C°) is neg-

ative definite. Due to the boundary conditions in Eq. (2.3.63), the average value of
strain fluctuation vanishes for any arbitrary 7, i.e.

% / (#): EdV =0 (2.3.68)

Hence, the variational principle can be written as
1
F(7) = G / {(—#:(C-C) "7+ ((F) —F):&(F)+27 : €3V =0 (2.3.69)
1%
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Let us apply the variational principle to a matrix comprising of n distinct type
of inclusions, with moduli C), with volume concentrations ¢™. The moduli of
the matrix is taken as C™! with the volume concentration ¢+, The material is
taken to be statistically isotropic and stress polarization is given by a piece constant
approximation #(x) = 7, = const in V). When al the phases in the material are
isotropic and the distribution of the inclusions in the infinite domain are isotropic,
then making use of isotropic Eshelby tensor S, the average fluctuation strain &, is
given by,

g, =-8:(C ', (2.3.70)
The variational functional then reduces to,
n+1 ) n+1
F(r,) =Y 1 (CV=C%) =) d((F)—7) : S (CO) ' it 2(F) 1 €°
r=1 r=1
(2.3.71)
The above equation can be reformulated as,
n+1 1
F(r.) = Zc(r)n ; [(C(T’) -C%) +S: (C’O)_l} DT —
r=1
n+1 n+1 n+1 (2372)
ZZC(T)C(S)TT S (CY T — QZC(T)TT o
r=1 s=1 r=1

To obtain the bounds from Eq. (2.3.67), the values of 7. should be chosen in such
that the functional F'(7,.) becomes extremal.
OF
or,

0 (2.3.73)
This yields n + 1 equations for obtaining appropriate values of 7,

T [(CW —c) '+ s (CO)—l} _(F): 8 (C)) =g (2.3.74)

The upper and lower bounds of the effective properties are obtained by substituting
the above equation in Eq. (2.3.67). The effective elastic constant is given by,

C = (nZH e 1+ 8:(C%):(Cc™ —CY)] ‘1> X

r=1

» . (2.3.75)
(Z 14+ 8:(C% " (C¥ - CO)}‘1>

The above result is Walpole’s generalization of Hashin and Shtrikman’s results [68].

In this study, determination of effective properties for a matrix containing vac-
uous inclusions (voids) is trivial. Let the volume V' consist of a matrix with elastic
constant Cy; = C, and a vacuous inclusion with elastic constant C, = 0 and volume
fraction ¢ = f. Also, let the elastic constant of the equivalent linear homogeneous
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volume be the same as that of the matrix in inhomogeneous volume V i.e. C° = C.
Then the equivalent elastic constant is derived as,

C— (Cw)Cv [1+S:Cy:(C, - CM)]‘1 +Mey [I+8:Cyl: (Cy — CM)}_I) X

(0 [1+8: G+ (Co= o)) e 148 O3 < (Cor = Can)] )

-1

C=(-nCc:M™) (Fa+s:ct—Cu] "+ -

s [ f P
C—[a_fﬂc.@ S ' +cC } (2.3.76)

The pioneering work of Hill[39] is very important in this context. Hill gave a theo-
retical solution for the internal inhomogeneities of stress and strain in an arbitrarily
deformed aggregate of elasto-plastic crystals. He defined the quantity @ as,

Q=C:(1-5) (2.3.77)

Q exhibits both minor and major symmetries. Substituting @ in Eq. (2.3.76),

a f f)Q‘l Lo (2.3.78)

The inverse of the above relation, in terms of compliance tensor M also holds. The
solution for M is later used in the constitutive equation.

f
(1—=17)

The analytical expression for calculation of non-zero components of @ for a coordi-
nate system parallel to the principal axes of an ellipsoid is given by [4],

é’:

M =M + Q! (2.3.79)

Qun = ﬁ@ﬂ — I, — 3d*I,,), (2.3.80)
Q22 = ﬁ(l&w + (1 —4v)(I, + ) — 3(a® + b*) Lp), (2.3.81)
Q1212 = ﬁ(&r(l —v)— (1 =2v)(I, + ) — 3(a®* + b*) 1), (2.3.82)

The variables in the formulae are described in Subsection(2.3.4.2).

Hill|39] also introduced the concept of concetration-factor tensors A and B, which
relates the average strain rate and stress rate in an inclusion r to overall uniform
strain rate and stress rate respectively.

DM =A":D and 6" =B":& (2.3.83)
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The average strain-rate and spin over phase r from Hashin-Shtrikman variational
principal is given by [43],

3 B 1 n+1 B 3 1 n+1
(ry _ . (rs) s (r) _ . (78) s
D" =D - ; E'r" and WO =W - Z; FUors  (2.3.84)

Where E™ and F" are symmetric fourth-order tensors. In terms of strain con-
centration tensor A, the Hashin-Shtrikman estimate given in Eq. (2.3.75) can be
expressed as,

n+1
C=> dNchaAn (2.3.85)
r=1

where,

n+1 -1
o0 (S00a) o
s=1

A=[I+S:C":(c™—cY! (2.3.87)

The strain rate concentration tensor satisfies the relation,

> A =1 (2.3.88)
In our case, the concentration tensor in void phase is,
A© = AW (1= )AMD 4 fA0)] (2.3.89)
But,
AV =[-8 and AN =] (2.3.90)
Hence, the concentration tensor reduces to

AV = [1—-(1-f)8]™" (2.3.91)

Kailasam and Ponte Castaneda [43] introduced the concept of spin-concentration
tensor C(T), analogous to strain-rate concentration tensor

W =w -c"D (2.3.92)
where,
n+1
> et =g (2.3.93)
r=1

For a two-phase particulate composite, the spin concentration tensor in second phase
is given by,

C® = (1 - I [C® — cV] [A?)] (2.3.94)

35



For a porous material, the second phase is vacuous, and considering our previous
assumptions, the spin concentration tensor reduces to,

c¥=_—(1-pH11:A® (2.3.95)

2.3.4.4 Effective Properties of nonlinear heterogeneous material

The rigorous bounds for effective properties of nonlinear heterogeneous materials
was first provided by Talbot and Willis who extended the Hashin-Shtrikman varia-
tional principles to include nonlinear behaviour of materials|16|. Ponte Castaneda
extended the Talbot-Willis variational principle to finite elasticity which provided
bounds for wide range of nonlinear elastic materials. Later on he proposed an alter-
nate variational principal that provided the estimates of effective energy potential of
nonlinear materials in terms of equivalent linear materials with the same microstruc-
tural distribution. This variational principal is the base for the constitutive model
described in the preceding sections.

For an n phase matrix in volume V with each phase occupying a subdomain V"),
the stress potential U(o, x) is expressed in terms of n homogeneous phase potentials
U"(a) by,

Ul.z) =Y x"(x)U" (o) (2.3.96)
r=1
where y(") is characteristic function of phase r,
1 if eV
) = Bore (2.3.97)
0 otherwise

Here, the phases are assumed to be isotropic, hence the potentials U () depend
on stress through the three principal invariants. A further assumption is that the
potential depends on stress through the two invariants Equivalent stress (o.,) and
mean stress (o,,).

The behaviour of nonlinear viscous material under large deformations is character-
ized by the relation,

oU(o,x)

D:
Jo

(2.3.98)

U can take the common power-law form,

Ulo,z) = 22(®) (‘7—‘1)) " (2.3.99)

n+1 \o,(x

n = 1 describes a linear viscous material and n = co describes a rigid-perfectly Jy
plastic material with tensile yield stress o,. The effective stress-strain-rate relation
is given by,

D=

(2.3.100)



where, & is the average stress, D average strain rate, and U is the effective energy
potential. According to principle of minimum complementary energy introduced by
Hill, for a strictly convex nonlinear potential U(eo, ), the effective potential must
satisfy the following condition,

U(6) = min /Uo',:c dv= inf U(o 2.3.101
(&) oes(a) Jy ( ) oeS(o) (o) ( )

where,
S(o)={o|V-0=0inV, and on = on on JV} (2.3.102)

is the admissible stress corresponding to the uniform stress & on the boundary.
Since the effective stress-strain-rate relation depends is related to effective energy
potential, the information regarding the effective energy potential U () is crucial.
For linear behaviour (n = 1), the effective potential is given in terms of effective
elasticity tensor,

. 1 ~
U(g) = 37 (C'o) (2.3.103)
Similarly, for a rigid perfect solid, the effective stress potential is given by,
N 0 if & € P,
U(5) = { noEs (2.3.104)
00 otherwise
The boundary P is defined by the effective yield function,
(&) =0 (2.3.105)
which gives us,
_ 0P(&)
D=A 2.3.106
e ( )

Ponte Castaneda Variational Principle

For a nonlinear heterogeneous material, Ponte Castaneda |16] proposed a new vari-
ational formulation for the effective potential in Eq.(2.3.101) in terms of effective
potential of equivalent class of linear comparison heterogeneous material, with the
same phase distribution. This variational formulation gives the lower bounds for the
effective stress potentials of nonlinear heterogeneous materials. The stress potential
for each phase of the linear comparison material is assumed to be quadratic,

UM (o) = LIS A T (2.3.107)

6 T ()™ e

where, ;") and k() are the shear and bulk modulus of the linear isotropic composite.
To account for nonlinearity in the original stress potential, which is of higher order
than quadratic form, Ponte Castaneda defined the set of functions,

VO 50 = sup {U(T)(a) - U(”(a)} (2.3.108)
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where U™ (o) is the potential of actual nonlinear phase. The proposed variational
principal takes the form,

0(&)> max {ff(a)—Zwv(”(u(’“),&(”)} (2.3.109)

U(@) is the effective potential of the linear comparison material. The bounds of the
effective potential of the linear comparison material can be obtained from the well
developed linear homogenization techniques. Eq.2.3.109 can be reformulated as

~ 1 _ n+1
U(&) > max {—6’-(C_la')—ZC(T)V(T)(;L(T),/@(T))} (2.3.110)
M(T)7H(T)>O 2 —1

C~! denotes the upper bound for effective elasticity tensor of the linear material
with same distribution of microstructure as the non linear material. For example,
the Hashin Shtrikman bounds introduced in the previous section can be used for
c. Hence, a linear upper bound for effective elasticity tensor of an equivalent
linear material can be used to derive the lower bounds of effective stress potential of
the nonlinear material. For a perfectly plastic and power law material, the variables
depend only on shear modulus. Hence Eq.2.3.110 reduces to,

~ 1 B n+1

U(6) > max { =& - (C7'a) — Y VO (u) (2.3.111)
w(m)>0 2 p—

The effective stress strain rate relation for a nonlinear material can be written as [43],

& =C(u)D (2.3.112)

Where /i is obtained from the stationary condition,

1 = oV (a)
~5 - |6C (i —} - Su) =0 2.3.113
o e ] - (%5 (23.113)
For a 2 phase nonlinear material with volume fractions ¢ and ¢®, and stress poten-
tials UV (o) and U® (o), the variational principle gives the following lower bound,

2
- 1 -
U(F) > max {—a— H(C7'E) =Y VO (), M)} (2.3.114)
M(T)7H(T)>O 2 —1

In the context of this study, one of the phases in the nonlinear heterogeneous
material is considered to be vacuous (porous material) and the matrix is considered
to be incompressible and isotropic. The stress potential of the vacuous phase is
given by U® = 0 and the stress potential of the matrix is assumed to be of the form
UM (o) = ¢(02,). Then stress potential of the linear comparison incompressible
matrix will take the form,

Ly

U0 (o) = TN (2.3.115)
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The effective stress potential is then given by,

0(5) > {ﬁ(&) - c<1>v<1>} (2.3.116)
Which can be reformulated into,
~ 1 =
U&) > cW {@U(&) — V(l)(,u(’“))} (2.3.117)

For a linear composite with ellipsoidal microstructure, Hashin-Shtrikman estimates
described in the previous section can be used for U. Also, let f be the volume frac-

tion of the vacuous phase, then (1 — f) is the volume fraction of the matrix. The
above equation then reduces to [19],

U@E) > (1-fe (%) (2.3.118)

where,

6u® " 2 (1=1)
The lower bounds on the potentials provide the upper bounds on the ultimate yield
surface. The effective yield surface can be obtained from Eq. (2.3.104), i.e., by
equating the above equation to zero, and considering Eq. (2.3.105), we obtain the
upper bound of yield surface to be,

L g 15-{[L [C:(H—S)]_1+C‘1] &} (2.3.119)

(2.3.120)

2.4 Description of the Constitutive Model

In the following section, the elastic-plastic constitutive model for porous metals as
proposed by Kailasam & Ponte Castaneda [42], and Aravas & Ponte Castafieda [4] is
described. The structure followed in this section is similar to the structure followed
by the authors in their original paper.

The constitutive model is an extension of initial models of Ponte Castaneda and
group, which was developed for a rigid-perfectly plastic material. For porous metals,
it is assumed that the vacuous inclusions do not store any energy and hence the elas-
tic effect in the material is solely due to the elastic properties of the matrix phase.
In comparison to plastic deformation, the elastic deformation is considered to be
small. These considerations facilitate the evaluation of elastic and plastic response
of the material individually, and to be clubbed later on to generate the complete
elastic-plastic response. It is observed that, under finite deformation, the evolution
of microstructure in the material is only due to plastic deformation [42].

The constitutive equations are derived using Ponte Castaneda variational prin-
ciple introduced in the previous section, i.e. the effective properties of nonlinear
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porous material is obtained in terms of effective properties of an equivalent linear
comparison composite with the same distribution of microstructure. The effective
properties of the equivalent linear comparison composite is in turn obtained from
Hashin-Shtrikamn estimates for particulate microstructures developed by Willis [68],
and Ponte Castaneda & Willis [18].

The vacuous inclusions, referred to as voids henceforth, are assumed to be ini-
tially ellipsoidal in shape and are uniformly distributed in an isotropic metal matrix.
At every material point in the homogenized metal, a representative local ellipsoidal
void is defined. The porosity of the metal is quantified by the void volume fraction f.

Total volume of voids

f (2.4.1)

~ Volume of the heterogeneous material

Let a,b and ¢ be the half lengths of the principal axes of the voids, and n®, n®
and n® be the unit vectors along the principal axes. The unit vector in the third
direction satisfies,

n® =nl) x n® (2.4.2)

It is difficult and cumbersome to account for evolution of size of voids through the
lengths of principal axes directly. An approximation, which is much simpler and less
time consuming would be to consider the aspect ratios of the principal axes. The
aspect ratios w; and wy are given by,

and wy = g (2.4.3)
To make use of the simplified linear-elastic estimates of Willis[68], it is necessary that
the ellipsoidal inclusions be aligned and the two point correlation function which de-
scribes the distribution of void centres be ellipsoidal i.e. the shape and orientation of
the two-point correlation function which describes the distribution of voids is identi-
cal to the shape and orientation of voids themselves. It is to be noted that the voids
and the distributions of their centres are assumed to have identical aspect ratios (in
Fig.(2.4.1) ¢/b = C/B). Due to this restriction, the voids and their distribution
function evolve identically when the material deforms. Hence, the porous material
maintains local orthotropic symmetry, with the axes of orthotropy aligned with the
principal axes of voids.

The internal variables that characterize the local state of homogenized porous metal
are,

wyp = —
a

s ={el,, fowi, wy,nM n® n®} (2.4.4)

eq’

The rate of deformation D at every point in the homogenized porous material is
additively decomposed in to elastic and plastic part.

D =D+ D" (2.4.5)
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Fig. 2.4.1: Void Geometry and distribution of voids in the matrix [19]

2.4.1 Elastic Constitutive Relation

Hypoelastic formulation as introduced in 2.3.3.1, is used to describe the elastic part
of rate-of-deformation tensor.

D'=M°: o (2.4.6)
where M€ is the effective compliance tensor and o is a corotational rate of Cauchy
stress tensor, corotational with the spin of the voids w relative to a fixed laboratory
frame.

c=0—-w-0o+0 w (2.4.7)

Due to the assumption of ellipsoidal symmetric distribution of voids, the generic
Hashin-Shtrikman estimate proposed by Willis[68] (Eq.2.3.79) could be used for the
effective compliance tensor (M = M*).

[ A4
1= f)Q (2.4.8)
Here @ is the Eshelby tensor defined in Eq.2.3.77 and M is the elastic compliance
tensor of the matrix material, which is given by the inverse of elastic modulus C.
For an isotropic material,

M°® =M +

1 1 1 1—2v
C =2uK J M=—K+—J=—|K J 2.4.
uK + 3k = o —l—?m 2,u< +1+1/ ) (2.4.9)

i, k and v are the elastic shear modulus, bulk modulus and Poisson’s ratio of the
matrix. K and J are the volumetric and deviatoric 4th order identity tensors given
by,
1 1

It is to be noted that I is the symmetric fourth order identity tensor, as the stress
and strain tensors are in symmetric space. A derivative of a symmetric second order
tensor with respect to itself would result in a symmetric fourth order identity tensor.
For any arbitrary fourth order identity tensor A,

DA™
aAsym

=1 (2.4.11)
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where,

Lijer = (Oar0ji + 0adjn) /2 (2.4.12)

In voigt notation, J and K are given by,

111000
111000
111000
T=15 000 0 0 (2.4.13)
000000
0000 0 0
[2/3 —1/3 -1/3 0 0 0]
~1/3 2/3 -1/3 0 0 0
=13 -1/3 2/3 0 0 0
K=|", 0 0 12 0 0 (2.4.14)
0 0 0 0 1/2 0
0 0 0 0 0 1/2]

Some important observations are,

1) Eshelby tensor S satisfies the conditions for minor symmetries, and it depends
on Poisson’s ratio v , aspect ratios (wi, we) and void principal axes (n;, ns,
n3)

2) Eshelby tensor @ exhibits minor and major symmetries, and depends on shear
modulus v, Poisson’s ratio v , aspect ratios (w;, ws) and void principal axes
(n17 Ny, n3)

3) The effective compliance tensor M€ depends on void volume fraction f, and
shape and orientation of the voids. The effective compliance tensor evolves
with change in micro-structure hence it accounts for the influence of mi-
crostructure in the elastic regime.

2.4.2 Yield Condition and Plastic Flow Rule

Using the variational principle proposed by Ponte Castaneda [16], the upper bound
for effective yield function was derived in Section 2.3.4.4 (Eq.2.3.120). Here, the
effective yield function depends on the internal variables, and considering isotropic
hardening of the matrix material, the effective yield function is given by,

(o, s) = %fa' m:o - o) (2.4.15)
It is important to note that the yield function is isotropic. o, is the yield function of
the matrix under uniaxial tension. The yield function depends of equivalent plastic
strain €, which accounts for the isotropic hardening. m is a normalized effective
viscous compliance tensor of linear comparison porous material. Since the matrix
phase is taken to be incompressible in plastic region, Poisson’s ratio has to be set to
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v=1/2.

m=m (f7 Wi, Wa, n(l)v n(2)7 n(3))
= 3/~’LM6|I/:1/2

. Ly f (2.4.16)
— 4l
=3u(— K+ J) + Q‘l)
’u(2ﬂ< I4+v (1=1) v=1/2
Hence,
3 3f _
m =K+ WMQ Yooy (2.4.17)

The numerical complications in evaluating Q at v = 1/2 can be avoided by using the
explicit equations given in Section 2.3.4. The plastic rate-of-deformation is obtained
from the normality rule (Eq.2.3.35),

D = AN (2.4.18)
where,
oo 2
=——=——m: 24.1
N e = 1= fm o ( 9)

Special Case: Spherical Voids

The yield function can be reduced to a simpler form when the aspect ratios are
w; = wy = 1. In this case the Eshelby tensor Q is given by [4],

7—bv 2(1+v)
=2 K J 2.4.20
Therefore,
_ 1 /15(1 —v) 3(1—v)

! =—|— K+ —-—J 2.4.21
Q@ () zu( 7 a1 (24.21)

1 /5 1
! =K+ 2.4.22
Q@ )me = - (5K +37) (2.4.22)

Substituting in Eq.2.4.17, for spherical case we obtain,
m— T e 3 g (2.4.23)

2(1-1) 41— )
The yield function is then given by,

1 3+2f 3f 9
P = : K+—J|:0— b 2.4.24
Using tensor operations, it can be shown that,
2
o:J:0=30% and o:K: 0= gagq (2.4.25)
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The yield function reduces to,

oo, 8) = (1 + %f) (1“_eqf)2 + %f <1“_’”f)2 —o2(e7,) (2.4.26)

2.4.3 Evolution of Internal Variables

With deformation of the material, the internal variables evolve and alter the macro-
scopic behaviour of the material i.e., the microstructure evolution are coupled to
the constitutive relations. Here, the internal variables are assumed to evolve only
under plastic deformation. This approximation is justified, because the elastic de-
formation in porous metals are to small. The evolution equations are determined
from the kinematic relations. It is also assumed that the evolution of the internal
variables are characterized by the corresponding average of plastic deformation rate
and spin in the voids. The averages are obtained from the homogenization procedure
discussed in the previous sections.

2.4.3.1 Evolution of equivalent plastic strain

Macroscopic plastic work in material is given by,

W=0:D"=Ac: N (2.4.27)
Plastic work on the microscopic level depends on the rate of equivalent plastic strain,

W = (1 f)o, (e, )en, (2.4.28)

Due to equilibrium, the work done on the macroscopic level should be equal to the
corresponding microscopic work. The evolution of equivalent plastic strain is ob-
tained from this condition,

o: N
(1= f)oy(eeq)

e =A = Agi(o, s) (2.4.29)

where,

o: N
gl(O',S> - (

T Flo (] Fos (&) (2.4.30)

2.4.3.2 Evolution of void volume fraction

Evolution equation of void volume fraction can be derived from the continuity equa-
tion. For any material point  in continuum, balance of mass is given by [11],

p+ pdiv(d) = 0 (2.4.31)

Since the vacuous phase hs zero density, density of the heterogeneous material is
equal to the density of the matrix. The effective density per unit volume of the
heterogeneous material in terms of density of the matrix phase py,

= (1= o (2.4.32)
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Therefore, '
p=—fou+ (1= fpu (2.4.33)

Since matrix material is incompressible in plastic region, the rate of change of den-
sity of the matrix would be zero (py; = 0). Hence,

b=—fpu (2.4.34)
Also,

div(z) =Va&-I=L-1I=trace(L) (2.4.35)
But,

trace(L) = tr(D + W)

=tr(D), since tr(W)=0 (2.4.36)

Substituting in balance of mass, we obtain,

—f pur + (1= f) par (D) = 0
j=(1-f(D)

Change of void volume fraction due to elastic deformation is assumed to be small
and recoverable. Hence, f depends only on the plastic rate of deformation,

f=@1=f)t(DP)

=(1- f)DZk
— A1 = )Ny (2.4.38)
= Ags(o, s)
Where,
92(0,8) = (1 — f)Nyx (2.4.39)

The initial VAR model does not account for void nucleation. In this study, strain
controlled void nucleation was coupled with the constitutive equation. The void
evolution due to void growth is given by

fq = Aga(o, s) (2.4.40)

And the strain controlled nucleation as described in Section 2.1 is given by

; . fN 1 526[1 —EN 2
f = p = - =
n Ageq, A SN\/_eXp [ ( SN (2441)

The evolution of porosity is then

f="Ff+f (2.4.42)
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2.4.3.3 Evolution of local aspect ratios

To determine the evolution equations of aspect ratios, it is important to recall the
computation of average deformation rate in phase r of a heterogeneous material in-
troduced in Section 2.3.4.3. Accordingly, the average deformation rate in the local
ellipsoidal void D" is given by,

D"=A:D? (2.4.43)

Where the concentration tensor A is evaluated at v = 1/2.
A=[1-1-f)S|,=1)] (2.4.44)

Applying product rule to aspect ratio wy,

/

a= (9
(g ) g) (2.4.45)

¢ is nothing but the plastic rate-of-deformation in the void along principal axis n®®).
Hence, the above equation can be reformulated in terms of rate of deformation of
voids [4],

W) = wy (n® - DY@ — pW . D)

= w; (NN —nWn®) . DY (2.4.46)
Substituting Eq.2.4.43 we get,
wy; = Awy (n®n® —nWnM): A N = Agy(o, s) (2.4.47)
where,
g3(0,8) = w (n®¥n® —nWnWy. AN (2.4.48)
Similarly, the evolution equation for wy is determined to be,
wy = Awy(n®n® —n@n®) . A N = Ag(o,s) (2.4.49)
where,
gi(0,8) = wy(n®n® —n®Pp?). AN (2.4.50)
2.4.3.4 Evolution of Orientation Vectors
The average spin in the local ellipsoidal void W™ is given by Eq.2.3.92.
W' =W —-C:D? (2.4.51)
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where, W is the spin of the continuum and C is the spin concentration tensor as
introduced previously.

C=—(1-fI:A (2.4.52)

II is the Eshelby rotation tensor which depends on aspect ratios and orientation
vectors.
The evolution of unit vectors of the ellipsoid along the principal axes is given by,

n® =w.n® (2.4.53)

w is an antisymmetric tensor which represents the spin of Eulerian axes of average
deformation of the void. The change of void orientation which is corotational to the
spin of the voids is given by,
o (i)
n =0 (2.4.54)
For a coordinate frame coincident with the local principal axes of the voids, w is
given by [4],

, v, 7+ w? .
(A}w = Wij WDU, ] §£ ], W; % wj (2455)
i J

With respect to a fixed Cartesian coordinate system (global coordinate system), w
is given by,

3 2
1 w + w; . . N ) .
_weat i (nOn) 4 nWn®) : DYl nOnd)
© +2izj Cw? —w? (nn5 4 nPin) : D nfint, (2.4.56)

/L;éj7 wl#wjv U)3:1

Substituting for void rate of deformation D" (Eq.2.4.43) and void spin W* (Eq.2.4.51),
the above equation reduces to,

, 1 o~ w? +w?
w=W—-A|C:N - 3 E ———2 (00D + nDn®): A N]nn|

w? — w?

i,j=1 J

P F g, w Fwy, wsz=1
=W — W?
(2.4.57)

where W, is know as the plastic spin of the continuum relative to the microstructure,

W, = AQ? (2.4.58a)
3 2 2
r_c. N_1L S U OO 4 nOn®): A N]n®no),
2 i1 Wi T W (2.4.58b)

i F g, w Fwy, wz=1
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For a coordinate system which is aligned along the principal axes of the void, the
components of ¥ are given by,

2 2
/ p w; +w; p
QZ‘ = Cijkl - 712 jzAijkl Ny,

(2.4.59)
i # j, w; # w;, wy =1, (no sum over i & j)
When any two aspect ratios are equal (for example w; = ws or wy = ws), the
material becomes locally transversely isotropic along the third direction, and W),
becomes indeterminate. Under such conditions the corresponding component of W,
can be set to zero without loss of accuracy [4]. For special case when the voids are
spherical, IT = 0, C = 0 and W, = 0. In these cases the material is locally isotropic.
During implementation in FE-program, it is important to take care of such special
conditions to avoid numerical oscillations and convergence issues.

2.4.3.5 Computation of Plastic Multiplier

The plastic multiplier is obtained from the consistency condition of the yield func-
tion. The consistency condition states that the time derivative of yield function
should be stationary.

d(o,8) =0 (2.4.60)
. 0P 0P . s
b= a+a—p ér +—f+z w”+zan<p () (2.4.61)

Since the yield function is isotropic, the consistency condition can be written in
terms of corotational derivatives as,

. 0D . 0D 0D, , o
d="""5+ @agq +—f+ nz Z 8n(p (2.4.62)

Substituting Eq.2.4.54 we obtain,

. 0D o 0D 0b . <~ O
0%, 0P 0P
o = 3 o+ 85€q56q+ (9ff+n2::15wnwn

o 0D 0% | o o (2.4.63)
:N:O'—G—ale,qul“‘angz‘l’a Ags+a—/\g4
=N:o-AH

where H is defined as the hardening modulus given by,

H:_(8<1> 0> 0D 0P ) (2.464)

@91 + Wgz + (9—10193 + (9—10294

When H > 0, the material is said to instantaneously harden, the yield surface ex-
pands. When H < 0, the material softens, the yield surface shrinks. When H = 0,

48



the material exhibits instantaneous perfect-plastic behaviour. Finally, the plastic
multiplier is given by,

. 1 o
A= ﬁN Lo forH #0 (2.4.65)

We know that the effective yield function is given by,

d(o,s) = ﬁa tm o —o.(,) 6
e Tl L R o R R A R
_1_f 2 1— flu v=1/2 | - y\~“eq

Taking the derivative of yield function with respect to void volume fraction f using
product rule, and by simplifying the equation further, we obtain,

o0 3 1 1+ .
af ~ —f) ( K+ —uQ ',- 1/2) : (2.4.67)

2 1—f
The derivatives of yield function with respect to aspect ratios are discussed in detail
by Aravas and Ponte Castaneda [4].

2.4.3.6 Rate form of the elastoplastic equations
From the elastic constitutive relation we have,

o

D‘=M®:0=0=C°: D" (2.4.68)

But, the elastic rate-of-deformation is given by,

D‘=D-D?=D - AN (2.4.69)
Hence,
o=C°:D—-AC°: N
:CG:D—%N:S'CE:N
1 2.4.70
:Ce:D—Z(N:Ce:D)Ce:N ( )
:< e—%Ce:NN:Ce):D
where,
L=H+N:C°:N (2.4.71)
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2.5 A note on numerical issues and extension of
ABAQUS VUMAT Subroutine

2.5.1 Numerical Issues

The VAR constitutive model was implemented in ABAQUS-Explicit through VU-
MAT subroutine at Fraunhofer IWM, Freiburg. However, this subroutine was not
qualified for metals undergoing large deformations, as in the case of metal forming
applications. In this section, the numerical issues encountered during this specific
application is discussed.

2.5.1.1 Element Closure

When metals with low initial porosity were subjected to extreme compression loads,
i.e. when the ratio of final height of the specimen to its initial height was less than
0.5, the elements distorted abnormally, and collapsed. This phenomenon is know as
Element closure in this context. Fig.(2.5.1) describes the phenomenon of element
closure in an axisymmetric upsetting test simulation. For this simulation, axisym-
metric continuum stress/displacement, 4-node, reduced-integration CAX4R, element
is used.

It was further observed in other types of Axisymmetric and 3D reduced and full

Fig. 2.5.1: Element closure phenomenon

integration elements. Use of full integration element rules out the possibility of hour
glass effect [64], which rules out hour glass effect as the possible cause. It was de-
termined that this phenomenon was due to improper evaluation of Eshelby tensors.
Here, the Eshelby tensors in the void frame are obtained by evaluating the integral
equations |4] in Mathematica software package, for a certain range and distribution
of aspect ratios. This data set is made available to the subroutine. For unevaluated
aspect ratios within the range, the Eshelby tensors are obtained by linear interpo-
lation within the subroutine.

1 ., dS(§)
©: Clgr g

= 2.5.1
4w we l€]=1 ( )
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where

(H():C)ijmu(&, v)= (0&;& + 01&i& + 5u§j§k + 05&:w)

2
2|£|1 (2.5.2a)
|£|4 1 §’L§]§k£l |§|2 1 glé‘] kl
Z = winYn® + w,n®Pn® £ n®nb (2.5.2b)
Eshelby tensor II is given by
1 dS(§)
II = H cC————— 2.5.3
47T’LU1’LU2 le=1] (E) |Z 1 €|3 ( )
where
. 1
(H(&): C)iju(§) = 2 (0€;&6 — 0,1&i& + 0ui&r — 0&ik) (2.5.4)
And the Eshelby tensor @ is written in the form
1 1 ds (&)
—Q = E¢)———= 2.5.5
L 47Tw1'UJ2 g1 (E) |Z_1 . €|3 ( )
where
1
Eij(§,v) = 0idj + 6adjn — W(@kﬁj& + 0;5x&i& + 00k + 05i&k)
. . ) (2.5.6)
71—, |:5z‘j5kl - W(éijgkfl + 5kl€i§j)} 1= T, 56k

Under large strains, the aspect ratios of the voids were observed to exceed the
ranges used to calculate the Eshelby tensors, which lead to numerical difficulties.
To troubleshoot this issue, the voids are assumed to be closed if the aspect ratios
are greater than 10% or less than 1072, Once the aspect ratios attain these limits, the
subroutine skips the calculation of Eshelby tensors and the evolution of void aspect
ratios are set to zero (g3 = g4 = 0). Also, a lower limit of 107 is set for void volume
fraction (f), as suggested by Kailasam and Ponte Castafieda [42|. Fig.(2.5.2) shows
that the element closure phenomenon is resolved.

Fig. 2.5.2: Upsetting test simulation which depicts the resolved element closure phe-
nomenon

ol



2.5.1.2 Convergence issue of Cutting Plane algorithm

As stated previously, the subroutine uses cutting plane algorithm to solve the local
problem of plasticity. Since the time step width in explicit simulations are small (of
order 1077), the number of cutting plane iterations required for convergence should
be in the range of 3-5. In the subroutine, the maximum number of possible cutting
plane iterations for each time step is provided as an input variable. Once this limit
is reached, the numerical calculation exits the cutting plane loop and the converged
results from the previous time step are assumed to be the solution for the current
time step as well. This approximation is justified as the time step width is small, and
doesn’t lead to abrupt changes in results. In the following simulations, a maximum
limit of 20 iterations are set for the cutting plane algorithm.

Irrespective of type of loading (Tension or Compression), it was observed that
the cutting plane algorithm failed to converge when the aspect ratios were equal to
1 i.e. when wy or we = 1 and the results obtained were not plausible. Fig.(2.5.3)
and Fig.(2.5.4) describe the numerical results of Upsetting and Uniaxial Tensile test
respectively. It can be observed that the material points where the aspect ratios
are close to 1, require more iterations in cutting plane loop, and eventually leads to
divergence of the solution.

SDV_W1
+1.0098+00
+1:0086+00
+1.006e+00

5, Mises
(Avg: 75%)
+2.7650+402

+2.028e+02
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+1.106e+02
+9.221e+01
+7.378e+01
+5.535e+401
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+9.932¢-01

Z
o
3

(a)

Fig. 2.5.3: Simulation results of upsetting test, which describes the numerical oscillations
due to non convergence of cutting plane algorithm. a)Aspect ratio wy b)Field
output of von mises stress distribution in elements c) Number of cutting plane
iterations required at each material point

This issue is linked to the calculation of the plastic spin WP given by Eq.2.4.58a.
In the calculation of P, the imaginary third aspect ratio (ws) is taken as 1.

1 s w? + w? o L o
@=c:N-23 LY [(0n) £ nin®): A N]nOn0),
2 ij=1 i T W (2.5.7)

7’7&.]7 wz%wja ’LU3:1
At any point during the calculation, when the aspect ratios are equal to each other
(wy = 1orwy =1o0r w = wy ), the denominator in the second term is equal

52



SDV_W1
+1.018e+00
+1.015e+00
+1.012e+00
+1.009e+00
+1.006e+00
+1.003e+00
+9.997e-01
+9.967¢-01
+9.937e-01

sbv17
+2.100e+01
+1.933e+01
+1.767e+01
+1.600e+01
+1.433e+01
+1.267e+01
+1.100e+01
+9.333e+00
+7.667e+00

S, Mises

(Avg: 75%)
+3.008e+02
+2.965e+02
+2.923e+02
+2.881e+02
+2.839e+02
+2.796e+02
+2.754e+02
+2.712e+02
+2.669e+02
+2.627e+02
+2.585e+02
+2.542e+02
+2.500e+02
+5.041e+01

+6.000e+00
+4.333e+00
+2.667e+00
+1.000e+00

+3.818e-01

Z ,15 :,,7,,, i z

il
i
i ‘fll v t
X

7
i/

(b)

Fig. 2.5.4: Simulation results of uniaxial tensile test, which describes the numerical os-
cillations due to non convergence of cutting plane algorithm. a) Aspect ratio
wl b) Number of cutting plane iterations required at each material point c)
Field output of von mises stress distribution in elements

to zero, which results in indeterminate W,. To overcome this numerical issue, the
plastic spin tensor W, and the corresponding terms of C;;i; are set to zero when the
difference between the aspect ratios are less than 1072,

WP =0 and Cju=0 when w;,—w; <1072 i#j (2.5.8)

Also, for the case where the voids are spherical, the yield surface is taken to be the
equation derived in Section 2.4.2 [4].

2 2

O, 9 Om,
£ + Z.f - O-Z(E:gq)

1—f 1—f
when w; —1.0<107%, i=1,2

2
®los)=\1+3/ (2.5.9)

2.5.1.3 Example from literature

To measure the accuracy of the subroutine with changes, a plane strain extrusion
process described in Kailasam and Ponte Castaneda [42] is simulated. The para-
metric dimension of the extruded part is described in Fig.(2.5.5).

A ] Ah = 0.6l

ho N

Fig. 2.5.5: Dimension of Extruded part

A material with initial porosity of f = 0.15 with spherical voids is used for this
simulation. The matrix material is considered to be elastic - perfect plastic with
a Young’s modulus of £ = 3000, and Poisson’s ratio v = 0.49. The specimen is
considered to be symmetric about the axes. The effect of fristion between the metal
and die interface is neglected. The material deforms in n® - n® plane. Fig.(2.5.6)
gives a comparison of void volume fraction between the old version of subroutine,
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SDV_F
(Avg: 75%)
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Fig. 2.5.6: Void volume fraction a)OId version of subroutine b) revised version of sub-
routine c) literature [42]

the revised version and the results from literature.

The variation of porosity along the bottom row of elements along the extruded
specimen is shown in Fig.(2.5.7). This plot is closely in agreement with the results
from literature. The void volume fraction predicted by VAR model is lower than
the Gurson model. The VAR model predicts that the voids close even before exiting
the die. The distribution of aspect ratio in the extruded part is given in Fig.(2.5.8).
It is observed that the aspect ratios of the voids are very small after extrusion and
the longest axis of the void is aligned in the direction of extrusion. It can been seen
that the results obtained from the revised version of subroutine agree closely to the
literature results.
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Fig. 2.5.7: Variation of void volume fraction along the bottom row of elements a) VU-
MAT subroutine b) Literature
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Fig. 2.5.8: Aspect ratios a) Older version of subroutine b)revised version of subroutine
c) literature [42]

2.5.2 Extension of VUMAT Subroutine
2.5.2.1 Hardening laws

For any simulation involving plasticity, it is important to provide the behaviour of
the material in plastic region to the FE program i.e. the right constitutive equation
which describes the plastic behaviour of the material must be used. The constitutive
equations can be broadly classified into power laws(Ludwick’s law and Swift law)
and saturation laws(Voce, Hockett-Sherby). Power laws tend to over predict the
stresses at high strains, on the contrary, saturation laws under predict the stresses.

To increase the scope of the subroutine, various isotropic hardening laws were

Flow Curve — Different Hardening laws
900 ‘ ‘ ‘ :

800

700

600
500

400

Power Law
Saturation Law

300

200 1

Equivalent Yield Stress oy(sgq)

100, 0.2 0.4 0.6 0.8 1

Equivalent Plastic Strain egq

Fig. 2.5.9: Flow curves obtained from Power and Saturation hardening laws
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implemented. In this study, only hardening laws which are independent of strain
rate and temperature are considered. For the evolution of the internal variables, it
is also important to provide the derivative of equivalent yield stress with respect to
equivalent plastic strain. The following hardening laws were implemented.

a) Swift law
o, = A(eo +€2,)" (2.5.10)
doy oyn

= 2.5.11

where A, €9 and n are material parameters.
b) Hockett and Sherby Law
oy=A—B[l—exp{-C(2)"}] (2.5.12)

doy
0,

where A, B, C' and n are the material parameters.

=B [1 — exp {—C’(aﬁq)”}} [Cn (a‘é’q)(”_l)} (2.5.13)

¢) Combination of Ghosh and Hockett-Sherby Law

oy =a[A—(A-B)exp{-C(2)"}]

+ (1 — ) [Ag(Bg +€2)"¢ — Cg) (2.5.14)

do,
0et,

= — B)exp{—C(eP )" n (eb,) Y
=a[(A—B)exp{-C(e,)"} (Cn(et,) " V)] (2.5.15)

+ (1 — Oé) [Ag(BG —+ 6§q)("G_1)nG]

where « is the weighting factor

The material parameters in the hardening laws are obtained from experiments like
uniaxial tensile test, upsetting test, etc.

2.5.2.2 Coalescence Criteria

Thomason based coalescence criteria as proposed by Pardoen and Hutchinson [56]
and Benzerga [9] were implemented in the subroutine. As the coalescence criteria
depends on aspect ratios, the critical value of the coalescence criteria were evaluated
for aspect ratios w; and wq, and equivalent aspect ratio we,. The critical value are
mapped to State dependent variables (SDV) for ease of post-processing.

The Pardoen and Hutchinson based coalescence is given by,

Pr
C, = Tmae/ Ty (2.5.16)




where
1/3
5 €XP (5612(1)
f——= , a=01, =12 (2.5.17)

The Benzerga coalescence criteria is given by

Pr
C, = Tmar/ Ty (2.5.18)

Xi -1 i
1 -2 | i 4+ 1.3y 2
[ =] (w§+0.1X;1+0.02X;2) Xi

Fig.(2.5.10) shows the distribution of critical values C; and C} in axisymmetric

11]1777]]
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Fig. 2.5.10: Distribution of critical values of Thomason based void coalescence criteria in
uniaxial tensile test (considering aspect ratio w; a) Pardoen and Hutchinson
based formulation C; b) Benzerga criteria Cj,

uniaxial tensile test. It is to be noted that the critical values obtained from both
the criterias are different and the field distribution is also different. However, the
maximum values are predicted at the same location by both.

2.5.2.3 Modification of Void Nucleation
As we know, the strain controlled void nucleation is given by
Fooae oA— N ! (ggq_€N>2 (2.5.19)
n = AL | =————exp|—=|—— 5.
e SNV 2w P12 SN

The nucleation function depends on equivalent plastic strain and positive stress
triaxiality. Usually the void nucleation parameters are identified from the uniaxial
tensile test simulations where the stress triaxiality is always positive. In case of
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pure compression loading (as in upsetting test), the stress triaxiality is negative
initially. As the load increases, the triaxiality on the outer surface of the specimen
increases purely due to friction in the tool. But, by the time stress triaxiality turns
positive, the equivalent plastic strain is high. Due to high equivalent plastic strain,
the amount of voids nucleated are less, as the nucleation function is towards the end
of standard distribution curve. The shaded region in Fig.(2.5.11) describes the total
number of voids nucleated. It is clear that the number of voids nucleated are few.

Total number of nucleated voids

Fig. 2.5.11: Gauss distribution of void nucleation function. The figure shows that the
number of voids nucleated are less when the equivalent plastic strain is high

To increase the number of nucleated voids, a new parameter called Nucleation
equivalent plastic strain 5?\/@(1 replaces the equivalent plastic strain in void nucleation
function. 51;)\,6(1 starts accumulating only when stress triaxiality is positive. The in-
crement of 51;)\,6(1 is zero when stress triaxiality is negative, and is equal to increment
of equivalent plastic strain when stress triaxiality is positive.

where
0 when T <0
Al = 7 2.5.21
ENeq {Aaﬁq when T >0 ( )

And the nucleation function is given by

D . 2
fo=Aer, A= ﬁexp [—% <$) ] (2.5.22)
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Fig. 2.5.12: Gauss distribution of void nucleation function with respect to Nucleation
equivalent plastic strain. The figure shows that the number of voids nucle-
ated are higher in comparison

Fig.(2.5.12) shows that the number of voids nucleated with this modification are
higher. Fig.(2.5.13) depicts the improvement in void nucleation in a standard up-
setting test. The new function predicts higher void volume fraction at right position.

(b)

Fig. 2.5.13: Distribution of nucleated void volume fraction in upsetting test (a) with old
nucleation function Eq.2.5.19 (b) New nucleation function Eq. 2.5.22
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Chapter 3

Parameter identification and
assessment of the material model

3.1 Identification of Hardening law parameters

The parameters of different hardening laws (implemented in the subroutine) are
identified by fitting the curves to experimental flow curve. In this study, Steel
20MnCrb>-GKZ is considered as this material is was studied at Fraunhofer IWM
as a part of AIF Project - IGF 17678 N. This grade of steel is case hardened and
used to manufacture gears, pinions, spindle, cams, etc. The material is subjected
to GKZ(Gluehen nach Kugelformiger Zementit) soft annealing to obtain spherical
cementite in the material structure, which makes it easier for machining and increases
its resistance to wear. The chemical composition of the material is given in Table
3.1.1.

The following methodology is used to obtain the experimental flow curve.

Steel C Si Mn | Cr S Others
20MnCr5 | 0.20 | 0.25 | 1.25 | 1.15 | <0.035 | (Pb)

Table 3.1.1: Chemical composition of 20MnCr5 Steel in % [28]

Steel p (tonne/mm?) | E (MPa) | v | o,(MPa)
20MnCrb>-GKZ 7.8 x 1077 200000 | 0.31 263.0

Table 3.1.2: Mechanical properties of 20MnCr5-GKZ Steel

1) True stress vs true strain data from uniaxial tensile test are used as a first
approximation, until the region when the elongation is uniform (here uniaxial
strain of 0.2).

The true stress and strain are calculated using the formula,

Otrue = Oeng(L +Eeng)s  Oeng = F/Ag,  €eng = Al/lo (3.1.1)
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e = IN(1 4 €eng) — (3.1.2)

700 True Stress vs True Strain
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Fig. 3.1.1: First approximation of flow curve data from uniaxial tensile test

2) For strains between 0.2 and 1.5, the flow curve is adjusted to the experimental
results of upsetting test by inverse simulation. In case of upsetting test, the
force displacement curve is used, as it is difficult to measure the instantaneous
cross section area of the specimen.

900
Flow Curve

800
700
600

500
400

300
Upsetting Test

True Stress (Mpa)
Tensile Test

200

100

0 T " = T T T
0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600

Plastic Strain

Fig. 3.1.2: Flow curve obtained from uniaxial tensile test and upsetting test results

3) The stress at higher values of strains for the flow curve were obtained by ex-
trapolation of the experimental data using a logarithmic function. Here, the
logarithmic function which was obtained by fitting the initial data is given by

Otrue = 1051n(e?,,.) + 760 (3.1.3)

The tabulated experimental flow curve obtained using the above procedure was used
to simulate tensile test, upsetting test and cylinder with notch test in ABAQUS, and
it was observed that the numerical force displacement curve were in close agreement
to the experimental force displacement curves.

The best fit for parameters in equations Eq.2.5.10, Eq.2.5.12 and Eq.2.5.14 were
obtained using least square method. Apart from the three previously mentioned
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hardening laws, the parameters for Ludwick law were also determined. Ludwick’s
hardening law is given by,
ep N\ (/zN)
=Al1 ! 3.14
ow=4(1+ 5 (314
Identified parameters are tabulated below.
A N
263.0 | 6.486
Table 3.1.3: Parameters in Ludwick hardening law
A o n
780.499 | 0.002 | 0.209
Table 3.1.4: Parameters in Swift hardening law
A B C n
263 | 623.4 | 2.018 | 0.666
Table 3.1.5: Parameters in Hockett and Sherby hardening law
Q A B C n Ag Bea Ca neG

0.669 | 0.0 | 910.0 | 1.1 | 0.7163 | 9436.36 | 0.0221 | 0.0917 | 7708.509

Table 3.1.6: Parameters in Hockett and Sherby - Ghosh hardening law

From Fig.(3.1.3) it is clear that the best fit is given by the combination of Hockett-
Sherby and Ghosh hardening laws. Hence, for further simulations Hockett-Sherby

and Ghosh hardening law parameters will be used.

3.2 Micromechanical Parameter Identification

In case of VAR micromechanical model, the micromechanical parameters to be iden-

tified are

1. Initial Void Volume fraction - fj

The initial void volume fraction of the material is obtained by observing the
specimen under SEM microscope at high resolution. It was observed that
the initial void volume fraction of Steel-20MnCr5GKZ, was almost zero. For

further simulations, f; is taken to be 1.5 x 1074

2. Void nucleation parameters
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Fig. 3.1.3: Comparison of different flow curve approximations with the experimental flow
curve

a) mean equivalent plastic strain for nucleation ey

b) standard deviation of distribution Sy

¢) void volume fraction of nucleated voids fy
These parameters are obtained by inverse simulation of uniaxial tensile test.
The nominal stress-strain curve obtained from simulations are compared to the
experimental nominal stress-strain curve to determine the parameters. Since
3 parameters are to be obtained from 1 curve, the system of equations is

underdetermined. Hence multiple stationary solutions can be obtained i.e.
the values of these parameters are not unique.

3. Void shape parameters

a) Initial aspect ratio wyg

b) Initial aspect ratio wag

For major part of the study, the voids are assumed to be initially spherical.
ie. wig = wyy = 1

4. Void principal axes n™", n(® and n® along the principal lengths of the void.
i) For 3-dimensional simulations the voids are assumed to be oriented along

the global Eulerian coordinate system.
na =e;, mNp =e, and ng = e (3.2.1)

ii) For Axisymmetric simulations, the void axes is assumed to be rotated by
270° about (Y, such that n® is oriented parallel to e;. This is done for
ease of interpretation of the aspect ratios.

na =e;, N =e; and N = —e (3.2.2)
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The parameters are identified by comparing the simulation results of axisymmet-
ric uniaxial tensile test to the experimental results. The identified parameter set
for an axisymmetric simulation is given in Table 3.2.1 and the stress strain curve
comparison is given in Fig.(3.2.1).

Jo en | Sn In Wi | W0
1.5x107%105]0.110.065| 1.0 | 1.0

Table 3.2.1: VAR model Parameters

Nominal Stress vs Strain
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""""" - = VAR Model

a

o

o
T

Nominal Stress (MPa)
N w B
8 8 8

=
o
o

0 0.1 0.2 0.3 04 05 0.6 0.7
Nominal Strain

Fig. 3.2.1: Comparison of Nominal Stress-Strain curve obtained from experiment and
VAR model of uniaxial tensile test

Since the numerical results from VAR model are to be compared to results from
Gurson model as implemented in ABAQUS, the parameters of Gurson model should
also be identified. The parameters to be identified are,

1) Initial void volume fraction f
As stated in VAR model, the initial void volume fraction is take be 1.57*

2) Yield function coefficients as introduced by Tvergaard and Needleman - q;, g2
and g3

In literature, various possible values for the coefficients are mentioned. The
most widely used values are ¢ = 1.5, ¢o =1 and qg3 = 2.25,and ¢ = 1, g = 1
and g3 = 1. Recently, Dunand and Mohr [30] proposed the values ¢; = 1,
g2 = 0.7 and g3 = 1. The influence of these values on the material behaviour
is shown in Fig.(3.2.2). It is seen that the coeflicients influence the drop in
stress carrying capacity of the material, once it reaches maximum load. Hence,
micromechanically it influences the void interactions.
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Fig. 3.2.3: Yield surface in o4 - 01, plane, Influence of yield function coefficients ¢; and
g2 - GTN Model

Change in yield surface, with yield function coefficients is shown in Fig.(3.2.3).
As seen, the yield surface for the coefficients proposed by Dunand and Mohr
[30] deviates from the exact solution for pure hydrostatic stresses, and the
model is much stiffer in comparison to the original Gurson model.

3) Void nucleation parameters ey, fy, and Sy
4) Critical void volume fraction f, and void volume fraction at failure f;

Same procedure as VAR model is used to identify the parameters. The identi-

fied parameters are give in Table 3.2.2 and the corresponding stress strain curve in
Fig.(3.2.4)

fo G| @ |en | Sn| In fe In
1.5x107% | 1 1 10.5]0.11]0.065 1| 0.023 | 0.027

Table 3.2.2: GTN model parameters
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Fig. 3.2.4: Comparison of Nominal Stress-Strain curve obtained from experiment and
Gurson model of uniaxial tensile test

3.3 Assessment of the constitutive model

3.3.1 Yield Surface

A comparison between the yield surface for spherical voids (w; = wy = 1 )as pre-
dicted by VAR and Gurson model is shown in Fig.(3.3.1). The coefficients in Gurson
model are taken to be ¢ = g2 = 1, which corresponds to the original model pro-
posed by Gurson [38]. The porosity is set at 1%. In forming process, the stress
triaxility is usually in the range of —1 < 7" < 1, and in extreme cases it might
extended upto 2. The difference between the two surfaces is narrow when the stress
triaxiality is close to zero, and as the triaxiality increases the yield surface of VAR
model gets broader.

Plot of Yield function ®

o
o

((req/ay)
o
o

o
IS

= Gurson
= Ponte Castaneda

Normalized Equivalent Stress
o
N

-8 -6 -4 -2 0 2 4 6 8
Normalized Mean Stress
(o _lc)
m° 7y

Fig. 3.3.1: Yield surface in o - 0y, - Comparison between VAR and Gurson model for
spherical voids with f = 1%

In the principal stress plane for a 2-D case, Fig.(3.3.2) shows a comparison be-
tween the yield surfaces obtained from von Mises material model, Gurson model
and Ponte Castaneda (VAR) model. The void volume fraction in case of the latter
2 models is considered to be 5%. Due to the presence of voids, the yield surface
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Fig. 3.3.2: Yield Surface in principal plane 2D case

For pure hydrostatic case, the yield surface of VAR model is stiffer which results
in lesser void prediction. The yield surface of Gurson model is narrow and attains
the analytical spherical shell solution [25]. Recalling Gurson yield function

2
o = <@) +2f cosh (i"—m) 1o (3.3.1)

Oy Oy

Using Taylor expansion for hyperbolic cosine term, and neglecting higher order
terms, the yield function reduces to

() lm () e

Plot of Yield function ®
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Fig. 3.3.3: Reduced Gurson yield surface according to Eq.3.3.2

On plotting the yield surface of the above reduced yield function (Fig.(3.3.3)),
it is seen that for pure hydrostatic case, Gurson yield surface coincides with VAR
yield surface. Hence, the last two terms in original Gurson yield function contribute
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to obtain the analytical solution.

o 2
P = (—q) +
Oy

o
2 h (=2
f cos (2

30)_1_f2

Y

(3.3.3)

Term contributing to exact solution

With increase in void volume fraction, the material softens and looses its stress
carrying capacity. This corresponds to shrinking of yield surface in o.4-0,, plane.
Fig.(3.3.4) depicts this behaviour of the yield function.

/o
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Fig. 3.3.4: Effect of f on yield surface

3.3.2 Void Growth

It is known that the evolution of void growth depends on the yield function ® through
the relation Eq.2.1.6. Due to the differences in yield function between Gurson and
VAR model, the void evolution in both cases are totally different. To understand
the behaviour of void evolution, a single 3-dimensional 8 noded hexahedral element
is analysed. The voids are assumed to be spherical initially wig = wyy = 1 with a
void volume fraction of fy = 1%, and the void nucleation terms are set to zero.
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Fig. 3.3.5: Evolution of void volume fraction without considering void nucleation, in a

single element test

Fig.(3.3.5a) shows the evolution of void under pure hydrostatic tension. As ex-
pected, it is seen that VAR model is overly stiff which results in underestimation of
void growth. This can be correlated to wider yield surface of VAR model in pure
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hydrostatic case. The void growth obtained by Gurson model is more realistic, be-
cause under pure hydrostatic loading voids grow due to dilatation, i.e. voids grow
spherically.

Fig.(3.3.5b) shows the path traced by void evolution function under uniaxial ten-
sion (7" = 1/3). VAR model predicts slower void growth in comparison to Gurson
model, which is more physical. In case of uniaxial tension, the voids elongate in the
direction of the loading and take the shape of a prolate ellipsoid. A sphere whose
radius is equal to the major axis of a prolate void would occupy more volume in
comparison to a prolate void, which is observed in case of uniaxial tension.

(d)

Fig. 3.3.6: Various possible void shapes a) Prolate void w; = w; = 5 b) Ellipsoidal
void w; = 5 & we = 0.2 ¢) Oblate voids w; = w; = 0.2 d)Spherical void
wp; = wp = 1

One of the advantages of VAR model is its capabilities to account for void shape.
To understand the influence of initial void shape on evolution of void, uniaxial single
element tensile test for different initial void shapes were studied. Fig.(3.3.7) describes
the influence of initial void shape on void growth. It is observed that for a triaxiality
of T'= 1/3, prolate voids are stiffer than other shapes, and oblate voids are softer
than others. The significant difference in void growths can be correlated to yield
surface observations of Danas and Aravas |25, who observed that, for —0.6 < g, <
1.2 regime, the ellipsoidal voids are stiffer when compared to oblate voids for a VAR
type yield function (MVAR).

3.3.3 Void Aspect Ratios

The evolution of void aspect ratio for different loading conditions are determined by
carrying out single element test. Fig.(3.3.8a) shows the evolution of void aspect ratio
in case of uniaxial tensile loading. The voids are assumed to be initially spherical
and the element is loaded along n® principal axes of the void. The aspect ratios
wy and wy increase, as the voids elongate in the loading direction i.e. the length of
semiaxis ¢ increases, while the lengths of other two axis a and b reduce, resulting in
increase of aspect ratio. Uniaxial tension results in prolate voids.
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Fig. 3.3.7: Effect of initial void shape on void growth in uniaxial tensile test

Similarly, in case of uniaxial compression Fig.(3.3.8b), the aspect ratios reduce
as the length of semi axis ¢ reduces and the lengths of semi axis a and b increase.
In uniaxial compression, voids grow to take oblate form. In physical sense, the be-
haviour of aspect ratios are as expected. This can be proved by unit cell simulations
with voids under constant triaxiality. But, the unit cell simulations are not a part

of this study.

For biaxial loading, the two loads are applied along n® and n® principal axes of
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Y
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(b) Uniaxial Compression

Fig. 3.3.8: Evolution of void aspect ratio under uniaxial loading, as observed in single

eleme

nt test

the void. In biaxial tension, voids grow to take oblate form with increase in load and
under compression load, the voids grow into prolate ellipsoids. The results of biaxial
tension and biaxial compression single element tests are given in Fig.(3.3.9). In case
of pure hydrostatic loading (triaxial load), the voids have to grow spherically, i.e.
the aspect ratios should remain constant. This is evident in Fig.(3.3.10).
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3.3.4 Void Nucleation

Strain controlled void nucleation function depends on 3 variables ey, fy and Sy
as described in Eq. 2.4.41. Based on observations of Chu and Needleman|23|, the
variable Sy is considered to be a constant Sy = 0.1. An optimum way to under-
stand the influence of ey and fy on material behaviour, is to study the variation of
nominal stress-strain curve of a uniaxial tensile test.

fn gives the total volume of nucleated voids. Fig.(3.3.11a) shows that with in-
crease in fy, the stress carrying capacity of the specimen reduces. This is because
with increase in fy, the number of voids nucleated increase, which makes the ma-
terial softer. Higher the value of €y, later the voids would nucleate. As the voids
nucleate late, the maximum stress shifts to the right in stress-strain curve. This
could be observed in Fig.(3.3.11b). The shift is not quite significant when fy is less.
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test

3.3.5 Void Coalescence

Recalling Thomason based coalescence criteria, we have

O.Pr

C, = maz/ %y (3.3.4)

and Benzerga coalescence criteria

Pr

Uma:n 0
Cy= -1 /1y ’ )
Xi — ;1
L2 + 1.3
1 —x7] [a (wg + 0.1y + 0.02)({2) . ]

It is clear that the coalescence criteria depend on equivalent plastic strain £, aspect
ratio w; and void volume fraction f. To understand the behaviour of coalescence
criteria, the variation of functions in the denominator of critical values are evaluated,

i.e. Rand S in Eq.3.3.6.

1
R = (3.3.6a)

2
1 -3 [a (1;.159) + m‘”?]

S = (3.3.6b)

;-1 ’
1—y2 : + 1.3y, ?
1 =xi) [a (wf 0Ly ! +0.02X;2) Xi

Fig.(3.3.12) shows variation of R and S with equivalent plastic strain for spheri-
cal void with void volume fraction of 1%. It is important to note that, the functions
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oscillate at certain plastic strain, which would lead to very high coalescence values.
The occurrence of the oscillation is influenced by void volume fraction, as shown in
Fig.(3.3.12b). The greater the void volume fraction, the earlier is the oscillation.

The variation of R and S with aspect ratio is described in Fig.(3.3.13). It is seen
that the influence of smaller aspect ratios on void coalescence critical value is very
high in comparison to the influence of larger aspect ratios. This analysis has been
seldom carried out in literature to prove the observations through experiments. A
detailed study in this regard has to be carried out in this context, which would not
be a part of this study.

==Thomason (R)
257 = 'Benzerga (S) |

0 0.5 1 1.5 2
Aspect Ratio
Fig. 3.3.13: Variation of R and S with aspect ratio for void volume fractions of f = 1%
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Chapter 4

Application of the constitutive model

In this section, the results obtained from simulation of bulk forming experiments
using VAR model is described. The obtained results are later compared to experi-
mental results and other damage models. The first three experiments in the following
section were carried out at Fraunhofer IWM and the 4th example details were ob-
tained from an industrial partner in the framework of AIF project - IGF 17678-N
Schadensvorhersage in der Kaltmassivumformung, and the same results are used
here.

4.1 Uniaxial Tensile Test

A round bar of 6 mm diameter is subjected to uniaxial tensile load. Fig.(4.1.1) out-
lines the dimension of the test specimen. An 8 mm extensometer is used to measure
the displacement, and the experiment is carried out at close to zero strain rate and
at room temperature. The micro-structure at the center axis of the specimen before
fracture is shown in Fig.(4.1.2).

12.000 mm
R12.7 mm

+0.000 mm
©10.000 mmZ5'025 mm

LA
I

H—

$6.000 mm J

\M10X1

t— 15.25 mm

!

60.750 mm£0.050 mm

121.500 mm —mMMM8™M=

Fig. 4.1.1: Dimension of uniaxial tensile test specimen

Due to symmetry of the specimen about its axis and about its center plane, a
quarter of the specimen is modelled using axisymmetric reduced integration elements
as shown in Fig.(4.1.4). The results obtained from 3-dimensional numerical model
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Fig. 4.1.3: Stress strain curve of tensile test

and axisymmetric model were analysed, and it was determined that they were sim-
ilar. Hence, to save computation power, axisymmetric models were used. To avoid

Fig. 4.1.4: Stress Strain curve of Tensile test

element localization towards the end of the simulation, a fine mesh with average
element size of 0.1 mm is used in the necking region. It is observed that the stress-
strain curve after maximum load is influenced by mesh size and mass scaling, hence
it is important to use the same element size and mass scaling for all simulations.

For numerical simulations, the parameters identified in previous chapter are used.
In case of VAR model, the voids are assumed to be initially spherical (w; = wy = 1)
and the specimen is loaded in the direction of n®. For Gurson model, the critical
void volume fraction f. and void volume fraction at fracture f; are not used, to
allow the simulation to continue. Fig.(4.1.5) shows the agreement of stress strain
curve of VAR model and Gurson model to the experimental results. The diameter of
the specimen after necking measured from the experiments was closely in agreement
with the numerical simulations. Fig.(4.1.6) gives the variation of the diameter along
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Fig. 4.1.5: Stress Strain curve as obtained from FE simulation

the loading path. The diameter after fracture was measured to be 3.15 mm. In the
experiment, the specimen breaks at a strain of 0.61. The diameter of the specimen
corresponding to this strain obtained from the numerical simulation (Fig.(4.1.6)) is
found to be 3.1 mm.

The field distribution of equivalent plastic strain, von Mises stress and stress
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Fig. 4.1.6: Change in diameter of the specimen at the center as obtained from FE sim-
ulation

triaxiality is given in Fig.(4.1.7) and the distribution of total void volume fraction,
void growth and void nucleation is given in Fig.(4.1.8). Maximum voids nucleate in
the necking region due to high plastic strain and positive stress triaxiality.

A comparison of the critical damage parameter of various phenomenological damage
models, Gurson model and VAR model is given in Fig.(4.1.9). It can be seen that,
all damage models predict the location of damage at the center of the specimen, in
agreement to the experiment. However, the void volume fraction predicted by VAR
model is less compared to Gurson model and other models do not give the details
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Fig. 4.1.7: a) Distribution of equivalent plastic strain €, b) distribution of von Mises or
equivalent stress o, C) stress triaxiality 7', as obtained from FE simulation
using VAR model
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Fig. 4.1.8: a) Total void volume fraction b) void volume fraction due to growth c) nucle-
ated void volume fraction as obtained from FE simulation using VAR model

about void shape, as opposed to VAR model.

A comparison of evolution of void volume fraction in an element at the center
of the specimen as obtained from VAR and Gurson model is given in Fig.(4.1.11).
The observations are in agreement to the conclusions from the yield surface analysis
in previous section. The voids volume fraction predicted by VAR model is lower
than Gurson model due to elliptical voids. Fig.(4.1.12) gives the increase in aspect
ratio at center element and Fig.(4.1.13) shows the distribution of aspect ratios in the
specimen. The voids elongate in the loading direction, and take the prolate shape.
As the model is axisymmetric, the semi axes a and b evolve proportional.

Thomason coalescence criteria and Benzerga coalescence criteria are analysed.
Fig.(4.1.14) shows the distribution of the critical values in the specimen. Since
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Fig. 4.1.9: a) void volume fraction of VAR model b) void volume fraction of Gurson model
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Fig. 4.1.10: Center element used for further analysis
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Fig. 4.1.12: Evolution of aspect ratio

center element at the center element

wy = wy, the critical values obtained from all three planes w;, we and w,ss are the
same. Fig.(4.1.15) gives the variation of coalescence criteria in the center element.
The plot gives the variation of the critical value obtained from Gurson model as
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Fig. 4.1.13: Distribution a) Aspect ratio w; b) Aspect ratio wo obtained from VAR
material model

well. The value obtained from Gurson model are higher as it predicts higher void
volume fraction. Also, it can be observed that coalescence parameter C' depends
on stress triaxiality. It can be concluded that there is no one specific critical value
which determines the void coalesce for VAR model. In the literature, the coalescence
conditions are typically qualified using unit cell simulations and do not consider void
rotation in 3-dimensional case. A need arises for a new coalescence model, which
considers the void rotation and void shape appropriately.
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Fig. 4.1.14: Distribution of a) Thomason Coalescence Criteria b) Benzerga Colaescence
criteria as obtained from VAR material model
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4.2 Uniaxial Compression Tests/ Upsetting Test

A round bar of 20 mm diameter and 45 mm height is subjected to compression
loading in the testing machine. The displacement in the specimen is calculated from
First, the elasticity of the machine is determined by
conducting a pseudo test without a specimen. The elasticity is used to calculate
a corrector, which is later used to determine the specimen displacement from the
machine displacement. An optical instrument is used to measure the instantaneous
maximum diameter of the specimen throughout the experiment. The dimension of
the specimen in outlined in Fig.(4.2.1). Due to symmetry, 1/4" of the specimen is
modelled using reduced axisymmetric elements in ABAQUS.
For numerical simulations, 4-nodded quadrilateral elements with an average mesh

the machine displacement.

45.00 mm

@ 20.00 mm

(a)

(b)

@ 10.00 mm

ww 052z

Outer Element

(c)

Fig. 4.2.1: Variation of a) Specimen Dimension b) Numerical model used for simulation
c) The outer element used for further analysis

size of 0.1 is used. The punch is modelled as a rigid body with surface contact.
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Fig. 4.2.2: a) Experimental Force-Displacement curve b) A minor crack on the surface
of the specimen at the end of the experiment

Since no lubricant is used between the contact surfaces in the experiment, a coeffi-
cient of friction of 0.4 is used for the numerical simulation. It is to be noted that,
the final shape of the specimen and the Force-Displacement curve is influenced by
coefficient of friction. n® principal axis of the void is aligned along v axes of the
global axisymmetric coordinate system. The specimen is loaded along n'® axis of
the ellipsoidal void.

Fig.(4.2.3) and Fig (4.2.4) shows the close agreement of the experimental results
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Fig. 4.2.3: Force-Displacement Fig. 4.2.4: Path of Maximum diam-
curve obtained from VAR eter through the experi-
and Gurson model ment

to numerical results, including the maximum diameter of the specimen. Fig.(4.2.5)
gives a comparison of the critical values of different damage models. The void vol-
ume fraction predicted by VAR and Gurson model are almost the same due to very
low positive stress triaxiality on the surface, and the voids nucleate at very high
equivalent plastic strains.

Fig.(4.2.7) gives the distribution of aspect ratios in the specimen. It shows that the
voids at the top center of the specimen remain spherical. From Fig.(4.2.6) it is clear
that the equivalent plastic strain and stress triaxiality experienced in this region is
close to zero, due to which the voids do not alter their shape. However, the voids
are elliptical towards the circumference of the specimen. The major axes of the void
is along the circumference, due to which wy is smaller than wy.

Fig.(4.2.9) shows the variation of aspect ratio of the outer element with loading.
Due to compression, the length of ¢ semi axis of void decreases, and a and b in-
creases. Initially, a and b increase at same magnitude. However, when the specimen
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Fig. 4.2.5: a) void volume fraction of VAR model b) void volume fraction of Gurson model
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Fig. 4.2.6: Distribution of a) Equivalent plastic strain b) von Mises stress c) Stress tri-
axiality as obtained from VAR model

starts bulging due to friction, they diverge, and voids take the elliptical form. The
aspect ratios do not evolve when the voids are assumed to be completely closed,
which explains the horizontal curve in Fig.(4.2.9). Fig.(4.2.8) gives the variation of

f in the outer element. The steep increase in VVF signifies nucleation of voids.

Fig.(4.2.10) and Fig.(4.2.11) show the distribution of coalescence criteria. Since
the aspect ratios are different, the distribution of critical values are also different.
The values obtained by Benzerga criteria is higher due to the additional quadratic
term in the denominator. In comparison to uniaxial tensile test, the critical values
obtained here are much smaller. This is due to lesser void volume fraction and low
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Fig. 4.2.11: Benzerga Coalescence Criteria

4.3 Cylinder with Notch

A round bar of 18 mm diameter and 27 mm height, with a notch as shown in
Fig.(4.3.1), is subjected to compression loading. This experiment is advantageous
as the region where damage occurs is known, the damage occurs in the notched
region. This allows for tracking the first visible crack. A high resolution, high
speed camera is used to capture the crack initiation. Due to symmetry, 1/4" of
the specimen is modelled. 3 dimensional elements are used, as the specimen is not
axisymmetric.

For numerical simulations, 8-nodded hexahedron elements with an average mesh
size of 0.1 is used. The punch is modelled as a rigid body with surface contact. Since
no lubricant is used between the contact surfaces in the experiment, a coefficient of
friction of 0.4 is used for the numerical simulation. It is to be noted that, the final
shape of the specimen and the Force-Displacement curve is influenced by coefficient
of friction. The void principal axes are aligned along the global Euler axes i.e. n(!),
n® and n® along z, y and z. The direction of loading is along n® i.e z axis of
the global coordinate system.

Fig.(4.3.2) describes the force displacement curve. The first visible crack was
spotted at a displacement of 16.5 mm.

Fig.(4.3.3) shows the close agreement of the experimental results to numerical
results. Fig.(4.3.4) gives a comparison of the critical values of different damage
models.

Fig.(4.3.6) outlines the distribution of aspect ratios in the specimen. Similar
to upsetting test, the voids at the top center of the specimen are more spherical.
However, the voids are elliptical in the notch region. The major axis of the void are
along the circumference of, due to which the aspect ratio w; is smaller. This implies
that the void on the surface coalesce first, and the crack grows inwards with loading.

Fig.(4.3.8) shows the variation of aspect ratio of the outer element with loading. w,
decreases initially and as the stress triaxiality increases, ws also increases. Fig.(4.3.9)
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Fig. 4.3.3: Force-Displacement curve obtained from VAR and Gurson model

and Fig.(4.3.10) show the distribution of coalescence criteria critical condition. Since
the aspect ratios are different, the distribution of critical values are also different.
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4.4 Industrial Example

The VAR model is used to simulate an actual cold bulk forming process to manufac-
ture a shaft with flange as shown in Fig.(4.4.1). The manufacturing process consists
of 4 steps. During the manufacturing process, it was observed that certain parts
had developed cracks on the flange surface. Here, we observe if the damage models
predict damage at the right location.

Since the part is axisymmetric, a 4 noded, quadrilateral reduced integration ax-
isymmetric element is used for simulation. A contact pressure dependent friction
model (Table 4.4.1 ) is used for the metal-die interface. The tools are modelled
as rigid bodies and a penalty contact friction model is used for interface. Velocity
boundary conditions are applied on the reference point of each tool. The various
steps in numerical simulation is shown in Fig.(4.4.1).

Since the coalescence model is premature for VAR model, void volume fraction f

Coefficient of Friction(u) | Contact pressure
0.12 0
0.12 500
0.1 250
0.08 600
0.06 650
0.04 700
0.02 750
0 800

Table 4.4.1: Pressure dependent coefficient of friction

*

Fig. 4.4.1: The steps in manufacturing process
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is taken as damage parameter for analyses. Fig.(4.4.2) describes the prediction of
damage variables of various damage models. It can be seen that most damage mod-
els predict the location of higher damage in the upper portion of the shaft, where
typically chevron cracks can form. But, this was not observed during the manu-
facturing process. VAR model predicts maximum damage on the circumferential
surface of the flange, in line to manufacturing observations.

Since the top portion of shaft is crucial, the void volume fraction at the end of
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Fig. 4.4.2: a) void volume fraction of VAR model b) void volume fraction of Gurson model
c) Cockroft Latham damage variable d) Rice and Tracy damage variable €)
Ayada damage variable f)Brozzo damage variable

every step as obtained from VAR model is shown in Fig.(4.4.3). The void volume
fraction starts increasing from Step-2 in the manufacturing process. But, the voids
on the circumferential region nucleate in the last step.

The distribution of equivalent plastic strain and stress triaxiality is show in
Fig.(4.4.4). It is evident that the stress triaxiality is higher in the flange region,
which would facilitate void nucleation and hence increase damage.
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Chapter 5

Conclusion and future work

5.1 Conclusion

The primary focus of this thesis work was to simulate ductile damage in forming pro-
cesses using micromechanically motivate VAR model proposed by Ponte Castaneda
et. al. [42]. The first part of the work dealt with validation of VUMAT subroutine
for forming simulations of materials with very low initial porosity.

Element closure phenomenon and non convergence of cutting plane algorithm
were encountered when the subroutine was used for large plastic deformation simu-
lations. The element closure phenomenon was linked to the calculation of Eshelby
tensors. As discussed in Section 2.9.1, the element closure phenomenon could be re-
solved by limiting the evolution of voids once f = 1 x 10~* and the evolution aspect
ratios outside the bounds 1072 < w < 10%. The latter issue of divergence of cutting
plane algorithm was due to indeterminate numerical solutions. When any of the as-
pect ratios are equal to each other or equal to 1, the plastic spin tensor WP? becomes
indeterminate. As proposed by Aravas [4], the spin tensor W? is set to zero when
the difference between any two aspect ratios is less than 1072. Also, the when the
voids are spherical, the derived yield function in Section 2.8.2 is hard coded. These
changes collectively could resolve the divergence of cutting plane algorithm. The
revised subroutine was used to simulate a plane strain extrusion example described
in Kailasam and Ponte Castaneda [42], and the obtained results were in agreement
with the literature results. This assures that the modification does not alter the
VAR constitutive equation.

The revised subroutine was further extended. Various isotropic hardening laws,
namely - Swift Law, Hockett-Sherby hardening law, and a combination of Hockett-
Sherby and Ghosh hardening law were coupled to the constitutive equation. Thoma-
son coalescence criteria and Benzerga coalescence criteria were also implemented.
The idea was to test the existing coalescence criteria for VAR model, as it has
been seldom attended to in the literature. Also, to predict better void nucleation
in negative triaxiality applications (upsetting test), the equivalent plastic strain in
void nucleation function was replaced by a new nucleation plastic strain which ac-
cumulates only when triaxiality is positive. This modification improved the void
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nucleation and the efficiency of the model in negative stress triaxiality regime.

The second part of the thesis work was to use the VAR model to simulate bulk
forming experiments (uniaxial tensile test, upsetting test and cylinder with notch up-
setting test) and an industrial example to understand the material model behaviour
and its advantages over other damage models. Steel 20MnCr5-GKZ material was
extensively studied at Fraunhofer IWM and hence this material was used for anal-
ysis. The flow curve of this material was obtained from Uniaxial tensile test upto
a strain of 0.2 and upsetting test for strains 0.2-1.5. It was determined that the
combination of Hockett-Sherby and Ghosh hardening law provided the best fit to
the experimentally obtained flow curve.

Certain parameters of VAR model were taken from literature, and the void nu-
cleation parameters were obtained by fitting the numerical stress-strain curve to
experimental stress-strain curve of uniaxial tensile test of a round bar. For all
simulations, the voids were initially assumed to be spherical, and n® axis of the
equivalent ellipsoidal void was assumed to be aligned to the direction of maximum
load. Also, the parameters of Gurson model were identified using similar procedure.

The yield surfaces of VAR model and Gurson model in o,,, — 0., plane was stud-
ied. In case of VAR model, the yield surface were wider for pure hydrostatic cases
and seemed to deviate from the analytical spherical shell solution as opposed to Gur-
son model. Also, it was determined that the hyperbolic cosine term in Gurson yield
function contributes to the exact solution at high stress triaxialities. The influence
of initial void volume fraction on the yield surface was also studied. As expected
the yield surface shrinks for higher void volume fraction, which signifies the loss of
stress carrying capacity of the material.

The evolution of void volume fraction in case of uniaxial tensile load (7" = 1/3)
and hydrostatic tensile load (T' = oo) was understood from single element simula-
tions. The void growth in Gurson model was larger in comparison to VAR model.
In case of uniaxial tensile load, the results obtained from VAR model are more re-
alistic. However, at high stress triaxiality the VAR model was much stiffer. Also,
the influence of initial void shape on void growth was studied for a stress triaxiality
of T'= 1/3. In this stress triaxiality region, oblate voids grow much larger than
other void shapes. The evolution of void shape i.e. the aspect ratios w; and ws,
at different triaxiality was studied and the obtained results were found to be intu-
itively realistic. Under uniaxial tensile load and biaxial compression load, initially
spherical voids grow to take the prolate shape, and under uniaxial compression and
biaxial tension, the voids took oblate shape. In pure hydrostatic case, the voids
grow spherically i.e. the aspect ratios remain constant and equal to one. Also, the
influence of void nucleation parameters on stress-strain curve and the behaviour of
coalescence criteria with equivalent plastic strain and void aspect ratios were scruti-
nized in Chapter 3. Nucleation parameter fy influenced the drop of the stress-strain
curve after maximum load, and ey shifted the maximum stress location to left.
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In Chapter 4, the results obtained from VAR model were compared to other dam-
age models for practical experiments and manufacturing example. The numerical
results obtained were in agreement with the experimental results. The shape of the
deformed body, the von Mises stress profile, equivalent plastic strain profile, stress
triaxiality profile and the distribution of void volume fraction demonstrate the cor-
rectness of the simulations and its applicability. It was also shown that, apart from
void volume fraction, VAR model gives more details about the shape of the voids. In
uniaxial tensile test damage is predicted at center of the specimen, in upsetting test
at the surface in the center and in notched cylinder test at the center of notch. The
damage location obtained from Gurson model and other phenomenological damage
models agreed closely to VAR model and to experimental observations. It is to be
noted that for these simple experiments, all damage models provide good results.
However, in the simulation of Shaft with flange, VAR model predicted the damage
location to be on the surface of the flange and other models predicted along the axis
of the shaft. VAR model agreed closely to the experimental results. However, it will
be premature to conclude that VAR model is most accurate with just one example.

The VAR model provides more details about the evolution of voids, its orienta-
tion and shape which is an important information to determine the anisotropy of
the material after forming. However, due to high computation cost, the complex-
ity of the constitutive equation and deviation of VAR model results at high stress
triaxiality, raises questions about its applicability. Also, unavailability of a tested
coalescence criterion which considers void rotation for 3-dimensional applications
is a drawback. The VAR model also requires identification of more mircostructure
parameters, in comparison to Gurson model. These parameters are difficult to iden-
tify using experiments. Based on VAR model, various other models [ MVAR, model
(Danas and Aravas [25]), GVAR model (Cao et. al [14]) , Second order homoge-
nization model (Ponte Castaneda et. al.)| are proposed in the literature which gives
better results for pure hydrostatic loading conditions.

5.2 Future Work

1. The computation cost of VUMAT subroutine can be improved by using ex-
plicit equations proposed by Aravas and Ponte Castaneda [4]| for calculation
of Eshelby tensors.

2. The VAR model can be modified to account for changes proposed by Danas
and Aravas [25] to improve its accuracy at high stress triaxiality.

3. A need arises to study the coalescence criteria, and develop a new criterion
which considers void shapes and void rotation appropriately.
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Appendix A

Cutting Plane Algorithm [55]

Numerical solution of a rate independent elasto-plastic constitutive relation is based
on an iterative solution of discretized form of balance of momentum equations. In the
context of finite element analysis, consideration at two different levels are required
- the global level and the material level. Typically the following steps are involved
in the computation [59],

1) The discretized momentum equations generate incremental motion , which are
used to calculate the incremental strain history using kinematic relations. This
step occurs at the global level.

2) For the computed incremental strain history, new values for the incremental
stress vector Ao is obtained by integrating constitutive equation at each ma-
terial point. The consistency condition (plasticity relations) are to be satisfied
at the material level.

3) With the computed stresses, a check for violation of equilibrium condition is
carried out. If violated, the iteration process continues by returning to step 1.

Step 2 is regarded as the central problem of computational plasticity and is a strain
driven process, i.e., the state variables are computed for a given deformation history.
Exact integration of the constitutive equations is possible in some cases of perfect
plasticity, however most plasticity models require a numerical method [3]. The ear-
lier numerical methods employed to calculate the incremental stress caused the final
stress to gradually drift away from the yield surface, which necessitated a method
to bring back the stresses to yield surface.

A powerful class of algorithms which accomplish this are the return mapping al-
gorithms, also known as elastic predictor-plastic corrector algorithms. Pioneering
work in this regard was published by Wilkins |67] who proposed the radial return
algorithm for J2 plasticity. Most of the algorithms in return mapping class are par-
ticular cases of the trapezoidal and midpoint rules, which are generalized to satisfy
the plastic consistency condition [54].Ortiz and Simo [55] pointed out that the scope
of proposed methodologies by large are restricted to simple plasticity models and to
constant isotropic elastic moduli. And, it also involves evaluation of the gradients
of plastic flow direction, the normal to the yield surface, the plastic moduli and the
elasticity tensor. The evaluation of these gradients are computationally expensive
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and are best avoided.

Ortiz and Simo proposed an algorithm, known as cutting plane algorithm (CPA),
within the framework of the operator splitting methodology, where the constitutve
evolution equation are split into two parts - elastic and plastic. CPA is applicable
to a general class of plastic and viscoplastic constitutive models exhibiting non-
associative plastic flow, arbitrary yield criteria and hardening laws, and does not
require the evaluation of gradients. The drawback of CPA is the difficulty in com-
puting the consistent tangent operator. When the derivation of the gradients are
complicated, CPA is a good choice. Also, when sufficiently small time steps are
used, the accuracy and convergence of CPA are claimed to be higher.

The elastic part of the constitutive equation is first integrated to obtain the
elastic predictor, which is taken as initial condition for the plastic equations. The
stress trajectories during the return mapping phase should follow the steepest de-
scent path corresponding to the yield function. In CPA, the relaxation process for
stresses and plastic variables are carried out in a step-by-step fashion by linearizing
the yield function around the current values of the state variables. The linearized
yield function defines a straight intersection or a cut with the plane & = 0 onto
which the stress and plastic variables are projected to define the next iteration -
hence the name "Cutting Plane’.

Since the constitutive model discussed in this study assumes associative flow rule
with isotropic hardening, here a generic outline of the CPA for rate independent,
associative elastoplastic material is described. The material can be characterized by
the following set of constitutive equations,

e =¢e°+¢€P (A.0.1)
o=o0(e%q) (A.0.2)
&’ = AN(o,q) = Ag—f_ (A.0.3)
§=hg(o,q) (A.0.4)

€, €° and €P represent the total, elastic and plastic strain tensors, o the Cauchy
stress tensor, q is a set of plastic variable and ¢ is the evolution equation of plastic
variables. Also, N is plastic flow direction and A is the plastic multiplier which is
determined for the Kuhn-Tucker condition,

dlo,q) <0 , A>0 , DA=0 (A.0.5)
Rephrasing Eq.(A.0.1) and Eq. (A.0.2) in rate form,

€ =¢e4¢€’ (A.0.6)

& =C(é — € (A.0.7)
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The constitutive equation can now be additively decomposed in to elastic and plastic
part. The elastic part is deformation driven and is given by,

E=¢ (A.0.8a)
6=C:¢ (A.0.8b)
el =0 (A.0.8¢)
q=0 (A.0.8d)
And the plastic set of equations,
e=0 (A.0.92)
6=-C:¢e’ (A.0.9b)
e = AN (A.0.9¢)
q=Ag (A.0.9d)

Substituting Eq. (A.0.9¢) in Eq. (A.0.9b), one obtains,

o=-AC:N (A.0.10)
Diving Eq. (A.0.10) and Eq. (A.0.9d) by A,

do

—=-C:N A.0.11

A C (A.0.11a)
dq
— = A.0.11b
A8 (A.0.11b)

Eq. (A.0.11) defines a set of rate-independent relaxation equation which directs the

0) _
0'n+1 = Otrial

L;?zl,, @00 Gnen) = 0

@ Cutting Planes

ey ; 2
“‘--\_‘1?1'"(‘7,(”)1' qu+1) =0

Elastic Domain at ¢,
&®(0,q9,) <0

®(0n41,Gus1) =0

®(0nqn) =0

Fig. A.0.1: Geometric interpretation of cutting plane algorithm [55]

stress trajectories to follow the steepest descent paths corresponding to the yield

98



surface. Figure (A.0.1) shows the geometric interpretation of the cutting plane al-
gorithm. In elastic equations (Eq. A.0.8), the inelastic response of the material is
frozen, i.e., the plastic strains and the internal variables are taken to remain un-
changed and all the prescribed deformation rate € is assumed to strain the material
elastically. In this scenario the elastic equations are directly integrable and the
stresses are simply given by the elastic relation, while plastic strains and internal
variables remain identically equal to their respective initial values. The yield function

® is linearized around the current values of the state variables a,(fil, q,(fil, to obtain,

aq)(i) . . op?

(o — o) +
8 n+1 aqn—l—l
The discretized form of relaxation equations Eq. (A.0.11) in terms of incremental
plastic multiplier AA is given as follows:

oty ~ DL (@) —al)  (A012)

ag:p — oY, = -aACY Nﬁl) (A.0.13a)

Substituting Eq. (A.0.13) in Eq. (A.0.12) and equating <I>n+1 to 0, gives the plastic
increment multiplier AA as,

(I)(i)
AN = ntl 50 (A.0.14)
N Cn+1 : N(-l)-l n+1 “

n+1

8 n+1

The iteration continues until the plastic consistency is restored within a prescribed
tolerance.
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Algorithm 1 Cutting Plane Algorithm |55]

1: Geometric Update:
Eni1 = €n+ Viu

2: Elastic Predictor:

p(0) _ _p
En+1 - E

e(0) p(0)
€41 = En+1 —Ep

0
q7(L4)—1 = dn

0 e(0) (0
o, = olenin 4,

3: Check for yielding:
it o <o

p(0). e e(0) 0 0)
then e, =€) 160, 1 =¢€,11,001 =0, 1;Qni1 = G, 1; €Xit

else =0
4: Plastic correctors:
AA: (I)n—i-l
i i a“b;) i
N Ol N - gl
qn+1
otV =all, — ANCY), N

i+1
qr(z—tl) = qn+1 + AAgn—i—l

5: Convergence check:
(i+1)
if ‘(I)n—i-l | < TOL|(I)n+1
_ i+l _ D), e _ _e . P _ e .
then 0,41 =0, .41 =4,/ ;6,1 =€ (Ont1, Gns1); €pt1 = Ent1 €415

else i=i+1; Go To step (4)
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