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Abstra
tMost metals used in stru
tural appli
ations often exhibit du
tile damage 
hara
ter-isti
s, where the 
ra
k propagates through the material with a

umulation of plasti
strain. Mi
ros
opi
ally du
tile damage 
onsists of void nu
leation, void growth andvoid 
oales
en
e. In metal forming pro
ess, du
tile damage is often a limiting fa
-tor. In this work, mi
rome
hani
ally motivated 
onstitutive model proposed byPonte Castañeda et al. [42℄ (VAR) for elastoplasti
 porous material is used to sim-ulate du
tile damage in standard bulk forming experiments, namely upsetting test,
ylinder with 
ir
ular not
h upsetting test and uniaxial tensile test. The abilityof the model to predi
t void growth with its shape 
hange is analysed. Also, thein�uen
e of initial shape of the void on evolution of porosity under di�erent stresstriaxialities are studied. Isotropi
 hardening laws, Thomason based 
oales
en
e 
ri-teria and new strain indu
ed void nu
leation formulation are implemented to theoriginal 
onstitutive equation. The results obtained from VAR model are 
omparedto Gurson model and other phenomenologi
al du
tile damage 
riteria proposed inliterature.Thesis SupervisorsFirst Supervisor: Dr.-Ing. Dominik Brands, UDESe
ond Supervisor: apl. Prof. Dr.-Ing. Joa
him Bluhm, UDEExternal Supervisors: Dr. Maksim Zapara, Fraunhofer IWMDr. Alexander Butz, Fraunhofer IWM
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∇
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Chapter 1Introdu
tion
1.1 Introdu
tionWith the advan
ement in metal working over the last 
entury, the use of metals instru
tures have exponentially in
reased. However, it is observed that these stru
turesdo not always full�ll the requirements and fail unexpe
tedly, resulting in monetarylosses, and more importantly 
auses injuries and in some 
ases loss of human life.To alleviate the amount of damage, a need arises to understand these failure me
h-anisms to be able to design reliable stru
tures.Failures 
an o

ur due to various reasons, like un
ertainties in loading or envi-ronment, inadequate design, material defe
ts or improper maintenan
e. Typi
ally,failure begins with formation of mi
ros
opi
 defe
ts (damage) whi
h then leads toma
ro
ra
ks and eventually to breakage (fra
ture). With re
ent te
hnologies in ma-terial s
ien
e, it is possible to alter the mi
rostru
ture of metals to strengthen them.But, this pro
ess in
reases the brittleness of the material, and results in 
atastrophi
failures with little warning. Therefore, predi
tion of damage and fra
ture is of a
uteimportan
e to be able to avoid unforeseen in
idents.In metal forming pro
esses, o

urren
e of failure determines the limit of the man-ufa
turing pro
ess. To optimize the pro
ess, it is important to understand the failureme
hanisms and the 
orrelation between the pro
ess and material parameters in thefailure o

urren
e. In 
old forming industry, the ability of the numeri
al model topredi
t du
tile failure is 
ru
ial. The 
ompli
ation arises due to very large plasti
strains, in whi
h the damage may lo
alize away from the maximum 
riti
al strain.This has lead resear
hers to study du
tile damage extensively in the last half 
entury.However the inadequa
y of experimental te
hniques to investigate and quantify thelast stages of the failure pro
ess makes it di�
ult to validate the 
onstitutive models.The in
reasing experimental te
hniques and advan
ement in me
hani
s and ap-plied mathemati
s, have 
olle
tively lead to development of numeri
al methods and
onstitutive models whi
h are 
apable of predi
ting damage and fra
tures. Also, theoutburst of 
omputation 
apabilities, fa
ilitates the investigation of sophisti
atedreal life problems. Over a period of time, various 
onstitutive models and numeri-1




al methods have been proposed in literature. But, there is no one perfe
t methodwhi
h is suitable for all appli
ations. Therefore, it is important to investigate them
losely and 
hoose the right method based on the appli
ation needs.Metallurgi
al resear
h have shown that, mi
ros
opi
ally, du
tile damage 
onsistsof three prin
ipal stages - void nu
leation, growth and 
oales
en
e of mi
rovoids[61℄. Ma
ros
opi
ally, du
tile damage represents a de
rease in material strength.Extensive resear
h have been 
arried out to understand du
tile damage. Pioneeringwork was published by M
Clinto
k et al. [50℄ who analysed the evolution of anisolated 
ylindri
al void in a du
tile elastoplasti
 matrix to understand the role ofmi
rovoids. Various material models have been proposed in the literature to predi
tthe in�uen
e of mi
rovoids on material degradation, with some 
onsidering the loadhistory. The material models 
an be broadly 
lassi�ed into - phenomenologi
almodels (Co
k
roft-Latham [24℄, M
Clinto
k [49℄,[48℄ ) and mi
rome
hani
s basedmodels (Gurson [38℄, GTN [63℄, Gologanu[33℄, Kailasam & Ponte Castaneda [42℄).
Fig. 1.1.1: Stages in Du
tile damage of a moderate du
tile material [1℄The observations of Ri
e & Tra
ey [57℄ and M
Clinto
k et al.[50℄ set the founda-tion for various mi
rome
hani
s based models. Gurson [38℄ was the �rst to proposea damage based yield 
riterion and �ow rule, for a rigid-perfe
tly plasti
 porousdu
tile material using the upper bound theorem of plasti
ity. Gurson based his ap-proximation on mi
rome
hani
al analysis of a thi
k spheri
al shell with a spheri
alvoid, subje
ted to hydrostati
 pressure, to obtain estimates for the e�e
tive 
on-stitutive behaviour. The approximate yield fun
tion is a fun
tion of hydrostati
stress whi
h a

ounts for plasti
 dilatan
y 
aused by the hydrostati
 
omponentsof stresses, and lead to better understanding of plasti
 behaviour in region of highhydrostati
 stress. The proposed model a

ounts for damage by a porosity term,that progressively shrinks the yield surfa
e. The evolution law for the porosity wasobtained from the ma
ros
opi
 
ontinuity equations by assuming in-
ompressibilityof the matrix phase. Gurson assumed the voids to grow spheri
ally, hen
e the voidswere isotropi
. This model is known to be a

urate for high triaxiality, where theporous material is expe
ted to remain isotropi
.An alternate 
lass of 
onstitutive models for porous materials whi
h a

ountsfor general three-dimensional loading , in
luding void rotation, has been developedby Ponte Castañeda & Zaidman [19℄ and Kailasam & Ponte Castañeda [43℄. Thesemethods were based on the variational (VAR) linear 
omparison homogenization2



Fig. 1.1.2: Material behaviour under uniaxial tensile test [70℄prin
iples of Ponte Castaneda [16℄ [17℄, whi
h allows the estimation of bounds andestimates for nonlinear 
omposites with the given 
lasses of mi
rostru
ture in termsof 
orresponding bounds and estimates for linear 
omposites with the same 
lassesof mi
rostru
ture, together with the estimates of Ponte Castañeda & Willis [18℄ forporous linear-elasti
 materials with ellipsoidal mi
rostru
ture. Kailasam & PonteCastañeda [42℄ proposed a general 
onstitutive theory for nonlinear 
omposites withmi
rostru
ture evolution as a 
onsequen
e of �nite strain boundary 
onditions. The
omputational issues in implementation of this model in a FE 
ode was dealt byAravas & Ponte Castaneda [4℄ in detail. This model gives an overly sti� predi
-tions at high triaxialities and small porosities [25℄. This limitations have been dealtwith in the re
ent works by Danas & Ponte Castañeda [26℄ and Danas & Aravas [25℄.Danas & Ponte Castañeda [26℄ made use of more a

urate se
ond order linear
omparison homogenization method of Ponte Castañeda. Danas & Aravas [25℄ pro-posed a simple modi�
ation to the variational homogenization method(MVAR) forelasto-plasti
, rate independent porous materials. It was shown that the MVARmodel gave similar results in 
omparison to Gurson model at high stress triaxiali-ties. These 
lass of models have the advantage of a

ounting for void orientation androtation, whi
h plays a 
ru
ial role at low stress triaxialities and leads to failure ofmaterial at lower displa
ement values when 
ompared to Gurson models. With theadvan
ement in 
omputational me
hani
s and numeri
al methods, 
onsiderable re-sear
h is being 
arried out in the �eld of damage me
hani
s and various new models
ombining di�erent existing damage models - mi
rome
hani
al and/or phenomeno-logi
al ( like Zhou et. al. [71℄ , Cao et. al. [14℄) are being proposed.In this study, VAR mi
rome
hani
al model proposed by Ponte Castañeda et al.is s
rutinized to understand the in�uen
e of various parameters in the 
onstitutiveequation on the behaviour of the material, and to study its a

ura
y in predi
tingdamage in bulk forming pro
esses. The material model has already been imple-mented in ABAQUS-Expli
it through VUMAT subroutine at Fraunhofer IWM andused to simulate materials with high porosity undergoing small plasti
 deforma-tions. The �rst part of the study is to validate the subroutine for industrial steels3



undergoing large deformations (plasti
 strain > 1.0), to solve any numeri
al issuesen
ountered during the pro
ess, and to extend the subroutine to in
orporate varioushardening laws, Thomason based 
oales
en
e 
riteria, and to improve void nu
le-ation under 
omplex loading. The latter part of the study deals with parametri
analysis of the material model, and to determine its a

ura
y in damage predi
tionby 
omparing the simulation results to experimental results and numeri
al resultsobtained from other damage models (mi
rome
hani
al and phenomenologi
al).

4



Chapter 2Theoreti
al Framework
2.1 Damage Me
hanismAs des
ribed in the introdu
tion, mi
rome
hani
ally du
tile damage 
onsists of threestages - void nu
leation, void growth and 
oales
en
e. In this se
tion an overview ofthese stages and the material models whi
h des
ribe them are provided.2.1.1 Void Nu
leationVoid nu
leation 
an be 
lassi�ed into homogeneous and heterogeneous [65℄. Homo-geneous nu
leation o

urs within the grains and does not involve pre
ipitation orin
lusions. Heterogeneous nu
leation o

urs at the se
ond phase parti
les or in
lu-sions. Heterogeneous nu
leation is a 
ommon o

urren
e in engineering materials,as most of the engineering materials 
ontain in
lusions or se
ond phase parti
les.Voids are reported to be nu
leated by tearing the in
lusion from the du
tile matrix(debonding) or by 
ra
king of the non deformable in
lusion during plasti
 deforma-tion. Fig.(2.1.1) shows the me
hanism of void formation in Aluminum reinfor
edwith Al2O3 parti
les [44℄.The in
lusions generally fail due to load shedding from matrix material to het-

Fig. 2.1.1: a) Debonding of In
lusion b)Cra
king of In
lusion in 6061 Aluminum rein-for
ed with Al2O3 parti
les [44℄erogeneity and leads to the formation of 
ra
k perpendi
ular to the applied load.5



Strong interfa
e leads to formation of 
ra
k in the in
lusion and weak interfa
e leadto debonding nu
leation. The nu
leation me
hanism is also in�uen
ed by manyother parameters like size and shape of in
lusion, orientation of in
lusion, tempera-ture, stress state, et
 [65℄.Babout et al.[6℄ studied the e�e
t of matrix hardness on void nu
leation me
ha-nism by in situ investigation of void nu
leation in Al matrix - pure Al(soft matrix)and stru
tural Al alloy (hard matrix). They observed that in hard matrix, voidnu
leation was driven by 
ra
king of in
lusion and in soft matrix, void nu
leationwas due to matrix-parti
le de
ohesion.Various models have been proposed in the literature to predi
t nu
leation. Thesemodels follow a 
ontinuum based approa
h to model the average nu
leation responseof an alloy system by determining a 
riti
al stress, strain or energy level. Gurlandand Plateau [36℄ were one of the �rst to propose an energy based nu
leation model.They suggested that voids would nu
leate when the elasti
 strain energy that 
ouldbe released upon de
ohesion would be 
omparable to the energy of the surfa
e to begenerated. Further Argon et. al. [5℄ proved that the energy 
riterion is only a ne
-essary 
ondition, and the a
tual separation requires rea
hing the interfa
ial strengthat the interfa
e. They proposed a phenomenologi
al model for void nu
leation byparti
le matrix de
ohesion , where the 
riti
al interfa
e stress 
an be approximatedas the sum of �ow and hydrostati
 stress.
σmax
p + σm = min(σI

c , σ
P
c ) (2.1.1)where σmaxp is the maximum prin
ipal stress, σI

c is the maximum stress that thematrix-parti
le interfa
e 
an undergo without de
ohesion and σP
c is the parti
lestrength. This 
riterion was based on the assumption that in
lusion is equiaxed andrigid and plasti
ally non-deformable. Also, it did not a

ount for parti
le size andshape. Various modi�
ation were proposed by Pineau et al., Lee & Mear to a

ountfor shape e�e
ts and stress 
on
entration fa
tor inside the parti
le.Based on the works of Gurson, Gurland [37℄ and Needleman & Ri
e [52℄, Chu &Needleman [23℄ formulated a two parameter void nu
leation 
riterion whi
h approx-imately a

ounts for plasti
 stress 
ontrolled nu
leation and plasti
 strain 
ontrollednu
leation. This formulation was based on statisti
s of parti
le spa
ing as dis
ussedby Gurson [38℄. Needleman & Ri
e [52℄ �rst proposed a two parameter void nu
le-ation given by

ḟn =M ˙̄σ +Nσ̇kk/3 = Aε̇peq +B ˙̄σm (2.1.2)where, σ̄ is the tensile �ow yield stress of the matrix material whi
h 
an be 
orre-lated to equivalent plasti
 strain. If the nu
leation of voids is ex
lusively 
ontrolledby equivalent plasti
 strain, then B = 0 and if the nu
leation depends only on max-imum stress transmitted a
ross the parti
le-matrix interfa
e, as suggested by Argon[5℄, an approximation 
an be obtained when A ≈ B. Chu & Needleman proposedformulations for the 
onstants A & B. For the 
ase of strain 
ontrolled nu
le-6



ation, they assumed that there is a mean equivalent plasti
 strain for nu
leation εN ,and that the nu
leation strain is distributed in a normal fashion about the mean.Thus, B = 0 and,
A =

fN

SN

√
2π

exp [−1

2

(
εpeq − εN

SN

)2
] (2.1.3)

SN is the standard deviation of the distribution and fN is the total void volume nu-
leated in 
onsistent with the void volume fra
tion of the parti
les. By varying SN ,a varying range of strain over whi
h voids nu
leate 
an be modeled. Needleman &Ri
e observed that a narrow range of SN would 
ause destabilizing e�e
t. Fig.(2.1.2)shows the e�e
t of SN on the void nu
leation fun
tion. For stress 
ontrolled nu
le-ation, A = 0 and B is given by
B =

fN

SN

√
2π

exp [−1

2

(
σeq + σm − εN

SN

)2
] (2.1.4)Strain 
ontrolled nu
leation is the most widely used model in the literature forGurson 
lass of mi
ro-me
hani
al models.

Fig. 2.1.2: E�e
t of sN on void nu
leation fun
tion[64℄2.1.2 Void GrowthThe stress free surfa
e of void results in stress and strain 
on
entration in the matrix.In
reasing the plasti
 strain would essentially lead to void growth in the dire
tion ofthe applied load. M
Clinto
k [49℄ through his analysis of a long 
ir
ular 
ylinderi
al
avity in a non-hardening material, subje
ted to a tensile stress along the axis, pro-posed a void growth model whi
h showed an exponential in
rease of void size within
rease in transverse stress. Ri
e & Tra
ey [57℄ analyzed a more realisti
 modelof an isolated void in a remotely uniform stress and strain rate �eld, to determinethe relation between void growth and stress triaxiality(T ). They derived the voidgrowth equation in the domain of 
ontinuum plasti
ity whi
h 
onsiders separationas a kinemati
al result of large but lo
alized plasti
 deformations. Huang modi�edRi
e & Tra
ey formulation to better 
apture the void growth at low stress triaxiality7



[15℄. The resulting void growth rate is expressed as,
ḟg =







1.28 exp(3

2
T

)

ε̇peq for T > 1

1.28 T
1
4 exp(3

2
T

)

ε̇peq for 0.33 ≤ T ≤ 1

(2.1.5a)Ri
e & Tra
ey model highlights the in�uen
e of stress triaxiality on void growth,however, this model assumes that the growth rate is independent of the mi
rostru
-ture and the in�uen
e of the neighboring voids. Berg [50℄ proposed a di�erent modelwhi
h assumed that the void growth 
ould be des
ribed by the dilational response ofan elasti
-plasti
 
ontinuum 
ontaining an imaginary distribution of spheri
al voids.This approa
h was later used by Gurson [38℄ to developed a dilational yield fun
-tion that depends on von Mises equivalent stress and mean stress. The void growthmodel proposed by Gurson is given by,
ḟg = (1− f)tr(ε̇p) = (1− f)tr(D) (2.1.6)2.1.3 Void Coales
en
eVoid 
oales
en
e is the �nal stage in du
tile failure mode. It is a sudden and rapidphenomenon where the neighbouring voids link to form a mi
ro 
ra
k that propa-gates qui
kly and leads to sudden failure. It is a shift from homogeneous deformationto lo
alization of plasti
 deformation in the intervoid ligaments. Void 
oales
en
e isin�uen
ed by many parameters like void shape, void orientation, stress triaxiality,void volume fra
tion, et
. Based on the orientation of the ligaments between the two
oales
ing voids, two types of lo
alization 
an o

ur - Ne
king and Shear lo
alization.At low to moderate stress triaxialities, void 
oales
en
e o

urs due to 
ombi-nation of ne
king and shear lo
alization, with shear lo
alization having a greatere�e
t. At high triaxialities ne
king predominates. Ma
ros
opi
ally, ligament failuredue to ne
king results in dimpled fra
ture surfa
e, while shear lo
alization results insmooth fra
ture surfa
e as it smeers the voids. Resear
hers have observed that invarious steel and aluminum, nu
leation of se
ondary voids in the intervoid ligamentsa

elerates and leads to early ligament failure even before the impingement of thelarger voids.We
k [65℄ 
arried out an extensive study using high resolution s
anning ele
tronmi
ros
ope (SEM) to understand the 
oales
en
e me
hanism in Aluminium 5052
ontaining holes in di�erent orientation. He subje
t the plates 
ontaining holes to atensile load in verti
al dire
tions. Fig.(2.1.3) depi
ts the ne
king me
hanism whenthe holes are arranged at 90◦ to the tensile load and Fig.(2.1.4) depi
ts the shearingme
hanism.Sin
e 
oales
en
e is sudden and qui
k, it is di�
ult to formulate a mathemati
almodel that would a

urately simulate the two me
hanisms. Majority of the proposed8



Fig. 2.1.3: Deformation sequen
e of aluminium alloy 5052 with holes oriented at 90◦with respe
t to tensile dire
tion - Ne
king me
hanism [65℄

Fig. 2.1.4: Deformation sequen
e of aluminium alloy 5052 with 2 holes oriented at 45◦with respe
t to tensile dire
tion - Shearing me
hanism [65℄models 
onsider the 
oales
en
e to o

ur when a material spe
i�
 geometri
 param-eter rea
hes a 
riti
al value. The parameters 
ould be void shape, porosity and/orvoid spa
ing. Tveergard & Needleman [63℄ proposed a phenomenologi
al model withthe assumption that the material failure due to void 
oales
en
e o

urs at a 
riti
alvalue of void volume fra
tion(fc) in a

ordan
e to experimental and 
omputationresults. This 
riti
al value was in
orporated into the 
onstitutive equation via thedependen
e of yield fun
tion on void volume fra
tion(f), in Gurson type damagemodels. When the void volume fra
tion rea
hes a 
riti
al, the approximate yieldfun
tion Φ is modi�ed. The yield fun
tion is of the form [63℄,
Φ =

(
σeq
σY

)2

+ 2f ⋆q1
osh( σkk
2σY

)

− {1 + (q1f
⋆)2} = 0 (2.1.7)9



The 
riti
al void volume fra
tion is in
orporated by a new 
oales
en
e parameter f ∗,
f ⋆ =







f, for f ≤ fc

fc +
f̄F − fc
fF − fc

(f − fc), for fc < f < fF

f̄F , for f > fF

(2.1.8)Here, fF is the void volume fra
tion at fra
ture, whi
h is obtained from the yieldfun
tion, when the stress 
arrying 
apa
ity vanishes,as
f̄F = 1/q1 (2.1.9)Embury proposed a geometri
al model to predi
t the fra
ture of the ligament be-tween two voids. he stipulated that when the void length is equal to the intervoidspa
ing , shear bands form and the voids 
oales
e. The strain to failure εf is de�nedgiven by,

εf = ln(√ π

6Vf
−
√

2/3 + εN

) (2.1.10)Thomason [60℄ argued that the homogeneous deformation of a du
tile material isinterrupted by the in
ipient of plasti
 limit-load 
ondition, at whi
h point the plasti
deformation 
on
entrates in the intervoid matrix over a single sheet of mi
rovoids,whi
h results in a du
tile fra
ture surfa
e. He analysed square prismati
 voids insquare prismati
 unit 
ells to obtain a 
losed-form empiri
al expression of the 
on-straint fa
tor using upper-bound methods. He 
laimed that repla
ing an ellipsoidalvoid with square prismati
 void would not lead to serious ina

ura
y in the solutionwhen the void volume ratio is less than 0.2. The empiri
al relation is given by [60℄
σM
Y

=
F

(a/b)n
+

G
(

b

b+ d

)m (2.1.11)In the above equation Y is the uniaxial yield stress, a represents half length of void,
b represents half breadth of void and (b+ d) represent half breadth of the unit 
ell.
F and G are 
onstants, n and m are exponents. Thomason proposed the followingvalues , F = 0.1, G = 1.2, n = 2 and m = 0.5.Thomason's model is a 
lose approximation of ne
king me
hanism, and is widelyused in the literature. It was later modi�ed by various authors ([56℄, [9℄, [21℄, [58℄).Pardoen and Hut
hinson derived an empiri
al relation for a 
ylindri
al unit 
ell 
on-taining spheroidal void, as shown in Fig.(2.1.5). They 
onsidered a 
ylindri
al diskof elasti
-perfe
tly plasti
 material welded to rigid platens and 
onstrained against�ow at the outer radius. An approximation of limit load for this 
on�guration interms of average normal stress σn was derived in line to Hill's Plane strain analysisof a thin plasti
 layer welded to and squeezed by two rigid platens. The lo
alisationis assumed to set in when, 10



σn
σy

=
[
1− χ2

]

[

α

(
1− χ

χw

)2

+ βχ−1/2

] (2.1.12)Where, void aspe
t ratio w is de�ned as,
w =

Rz

Rr

(2.1.13)

Fig. 2.1.5: Representative Volume Element with geometri
 parameters, symmetry lines,and boundary 
onditions [56℄When the initial aspe
t ratio(λ0) of the unit 
ell is 1, the distan
e between theligaments(χ) in terms of equivalent plasti
 strain is given by,
χ =

Rr

Lr
=

(
3

2
f
λ

w

)1/3

, where λ = exp(3

2
εpeq

) (2.1.14)For �at voids (W → 0), the developed model predi
ts in�nite du
tilities. To over-
ome this drawba
k, Benzerga introdu
ed a quadrati
 equation in the denominatorbased on the unit 
ell results of Golaganu.
σn
σy

=
[
1− χ2

]

[

α

(
χ−1 − 1

w2 + 0.1χ−1 + 0.02χ−2

)2

+ 1.3χ−1/2

] (2.1.15)The plasti
 limit load 
riterion requires knowledge of the void aspe
t ratios w, spa
-ing ratios χ and the maximum tensile stress transverse to the ligament. In 3D 
ase,a plane exists that is traverse to the ligament and the stress will vary within thisplane. The maximum tensile stress in this plane must be determined to evaluate theplasti
 limit load 
riterion [22℄. Constitute models have been proposed by Chen[22℄and S
heyvaerts[58℄ for the 
ase where voids do not align themselves in the dire
tionof maximum prin
ipal stress. Chen[22℄ proposed a pro
edure for modeling an arbi-trary ellipsoidal void as an axisymmetri
 void. Consider an arbitrary ellipsoidal voidwith semi-axes a, b and c with 
orresponding ve
tors n1, n2 and n3. The distan
e11



from the 
enter to void surfa
e along the prin
ipal loading dire
tion is denoted by
R1. A line-proje
tion of the void is taken with the prin
ipal loading dire
tion as theviewing dire
tion to obtain an ellipse with semi-axes R2 and R3. The re
onstru
tedgeometry of the void is as shown in Fig.(2.1.6) and the equivalent aspe
t ratio asproposed by Chen is,

weq =
R1√
R2R3

(2.1.16)

Fig. 2.1.6: Pro
edure for modelling an arbitrary ellipsoidal void as an axisymmetri
 void[22℄In VAR model, the semi-axis c and its 
orresponding ve
tor n3 is aligned to theloading dire
tion. Hen
e the equivalent aspe
t ratio would be de�ned as,
weq =

c√
ab

=
√
w1w2 (2.1.17)For an ellipsoidal void, the inter distan
e between the ligaments χ 
an be obtainedby substituting Eq. (2.1.17) in Eq. (2.1.14).

χeq =

(
3

2

f

weq
exp

(
3

2
εPeq

))1/3 (2.1.18)2.2 Overview of damage modelsThe damage models 
an be broadly 
lassi�ed into:1) Phenomenologi
al modelsa) Un
oupled damage modelsb) Coupled damage models2) Mi
rome
hani
s based models 12



2.2.1 Phenomenologi
al modelsThe phenomenologi
al models 
an be further 
ategorized into un
oupled damagemodels and Continuum damage me
hani
s (CDM) based 
oupled damage models[15℄. In the former approa
h, failure is predi
ted to o

ur when an external variablerea
hes a 
riti
al value without intera
ting with the 
onstitutive equations. Un-
oupled models are easy to implement in an FE software but are not a

urate for
omplex loading 
onditions and large strains. In the latter approa
h, the e�e
t ofvoid growth on material behaviour is in
orporated by introdu
ing an internal dam-age variable in the 
onstitutive relation. Void nu
leation 
an also be in
orporatedby modifying the damage growth law. Lemaitre [48℄ and Chabo
he [20℄ developedCDM models based on a thermodynami
 framework. But, Lemaitre based modelswere observed to predi
t the maximum damage lo
ations ina

urately for shear dom-inated loading. Various extensions have been proposed to these models to in
reaseits e�
ien
y.2.2.1.1 Un
oupled damage modelsUn
oupled damage models, also referred to as damage 
riteria, impli
itly assumethat the state of damage of a stru
ture does not in�uen
e the state of stress orstrain of the material. These models were physi
ally motivated and purely phe-nomenologi
al. The damage parameter is 
omputed using an integral of a stressstate fun
tion, whi
h is strain path dependent or independent, based on the model.It takes the general form,
∫ ε̄f

0

f(σ)dεpeq or∫ ε̄f

0

f(ε)dεpeq = Dc (2.2.1)
ε̄f is the equivalent plasti
 strain just at the moment of fra
ture and Dc is thematerial 
onstant that de�nes the onset of fra
ture. Co
k
roft-Latham proposed a
riterion based on the tensile strain energy density 
onsidering the magnitude of thehighest normal tensile stress σmax, given by

Dc =

∫ ε̄f

0

σmaxdε
p
eq (2.2.2)Co
k
roft-Latham damage model is often used to predi
t the initiation of 
ra
k andis widely used bulk forming industry. The normalized Co
k
roft-Latham damage
riterion is de�ned as,

Dc =

∫ ε̄f

0

σmax

σeq
dεpeq (2.2.3)M
Clinto
k proposed a model whi
h also in
luded the minimum prin
ipal stress andthe hardening parameters. A

ording to M
Clinto
k

f(σ) =

√
3

2(1− n)
sinh

( √
3

2(1− n)

σ1 + σ2
σeq

)

+
3

4

σ1 − σ2
σeq

(2.2.4)13



Ri
e & Tra
ey based their damage model on stress triaxiality,
f(σ) = exp

(
3

2
T

) (2.2.5)Johnson & Cook [41℄ proposed a damage model whi
h a

ounted for path depen-den
y by a

umulating damage as the deformation pro
eeds. The damage indi
atordepends on strain, strain rate, temperature and pressure.
f(σ) =

1

ε̄f
, ε̄f = [C1 + C2 exp(C3T )] [1 + C4 ln(ε̇

∗)] [1 + C5t
∗] (2.2.6)where ε̇∗ and t∗ are dimensionless strain rate and homologous temperature respe
-tively.The un
oupled damage models are easy to implement in a FE program and re-quires minimal 
omputation power. Sin
e they do not in�uen
e the material prop-erties, the a

ura
y of the results are questionable. Their major weakness is theappli
ation to 
omplex loading paths outside the identi�
ation zone.2.2.1.2 Coupled damage modelsFor 
omplex loading paths, su
h as non-proportional loading or anisothermal, stressdistribution and stress triaxiality 
hanges enhan
ed by the damage is an a

eleratingfa
tor in stru
tural failure. Close to the rupture 
ondition, the error from un
oupled
onstitutive equations are in the order of 10 -50% [47℄. To predi
t the damage a

u-rately the 
ontinuum equilibrium must be solved in a fully 
oupled manner with thedamage parameters. From physi
al point of view, this 
oupling is due to the natureof damage. Damage results in de
rease of elasti
ity modulus, density and plasti
strain-hardening. The basi
 
onstituents of these damage models are,1) an equation relating the damage variable and apparent sti�ness2) a loading fun
tion spe
ifying the elasti
 domain3) a law governing the evolution of damage variableLemaitre [47℄ proposed a 
ontinuum based 
oupled damage model whi
h was de-rived from a thermodynami
 framework. He assumed a s
alar damage variable

D(0 ≤ D ≤ 1) whi
h des
ribes isotropi
 damage as internal variable. D representsthe surfa
e density of intera
tion of mi
ro-
ra
ks and mi
ro-
avities with any planein the body. The 
riterion for mi
ro-
ra
k initiation isD = Dc , Dc is of the order 0.2to 0.8 depending upon the material. He derived the state laws of the state variablesas well as the dissipation phenomenon from a 
onvex thermodynami
 potential ψ ofthe form,
ψ = ψ(εe, t, α, p,D) (2.2.7)14



α and p are are the internal variables asso
iated with anisotropi
 hardening X andisotropi
 hardening R respe
tively. The e�e
tive stress σ′ is de�ned as,
σ′ =

σ

1−D
(2.2.8)The elasti
ity law is given by,

σ = ρ
∂ψ

∂εe
(2.2.9)The thermodynami
 potential de�nes a variable Y asso
iated with D, whi
h is anal-ogous to elasti
 strain energy.

Y = −
σ2
eq

2E(1−D)2

[
2

3
(1 + ν) + 3(1− 2ν)T 2

] (2.2.10)The evolution equations of the internal variables are obtained from Clausius-Duheminequality. The evolution equation of the damage variable is given by,
Ḋ = Λ̇

∂Φ

∂Y
=

(−Y
S0

)s0 Λ̇

1−D
(2.2.11)

S0 and s0 are temperature dependent material 
onstants , whi
h must be identi�edfor ea
h type of damage. It is also important to note that the standard Lemaitremodel is symmetri
 with respe
t to stress state. Lemaitre model is being 
ontinu-ously investigated and various modi�
ations are proposed to improve its a

ura
yunder shear loading.2.2.2 Mi
rome
hani
s based damage modelsAs des
ribed in the introdu
tion, these models are based on mi
rostru
ture 
onsid-eration. The in�uen
e of du
tile damage in the yield 
ondition is taken into a

ountby introdu
ing the porosity term and mean stress in the yield fun
tion. Von Misesplasti
ity model is independent of mean stress and predi
t plasti
 in
ompressibil-ity and therefore 
ould not show the dilatan
y evident in porous du
tile materials.Here a short overview of Gurson model is des
ribed, as the results from VAR modelwould be 
ompared to Gurson model in later se
tions. Gurson [38℄ proposed theyield fun
tion to be of the form,
Φ =

(
σeq
σy

)2

+ 2f cosh

(
3σm
2σy

)

− 1− f 2 (2.2.12)The evolution equation of the void volume fra
tion is obtained from 
ontinuity equa-tion as,
ḟg = (1− f)ε̇pkk (2.2.13)Several extensions and modi�
ations (Tvergaard & Needleman [63℄ , Gao et al. [32℄)were proposed to the original Gurson model to improve its a

ura
y and to simulatethe 
omplete damage pro
ess by a

ounting for intera
tion, nu
leation and 
oales-
en
e of voids. Tvergaard [62℄ introdu
ed 3 
onstants (q1, q2 and q3) in the Gurson15



yield fun
tion to a

ount for intera
tion between neighboring voids based on analysisof a material 
ontaining a doubly periodi
 array of 
ir
ular 
ylindri
al voids underplane strain 
onditions. Chu & Needleman [23℄ in
orporated two parameter voidnu
leation whi
h allows for plasti
 strain 
ontrolled and stress 
ontrolled nu
leationto be modeled. Tvergaard and Needleman [63℄ later proposed a modi�
ation to 
ap-ture the rapid deterioration of sti�ness after lo
alization. This model is generallyreferred to as Gurson-Tvergaard-Needleman (GTN) model in literature. The Gurson
lass of models are proved to be ina

urate for low tri-axiality loading 
onditionsand shear dominated models, where the void growth me
hanism is ina
tive. Xue[69℄ and Nahshon & Hut
hinson [51℄ proposed a phenomenologi
al modi�
ation byin
luding the e�e
t of third stress invariant in GTN model to improve it's a

ura
yunder shear loading. However, this model was proved to over predi
t the damageunder high stress triaxialities 
onditions, whi
h was an advantage of the originalGurson model. Consequently, Nielsen and Tvergaard [53℄ proposed a modi�
ationto Nahshon-Hut
hinson model, to allow for damage a

umulation under shear load-ing to be a
tive only for low stress triaxialities [30℄. A re
ent shear modi�
ation forGurson 
lass model was proposed by Zhou et. al. [71℄ by 
ombining damage me-
hani
s 
on
epts of Lemaitre with the GTN void growth model. But the proposedmodi�
ations did not a

ount for void shape or void orientation, whi
h would bekey to a

urately predi
t damage under 
omplex loading 
onditions.Tvergaard & Needleman[63℄ modi�ed the Gurson yield fun
tion to take the form,
Φ =

(
σeq
σy

)2

+ 2q1 f
∗ cosh

(

q2
3σm
2σy

)

− 1− q3f
∗2 (2.2.14)They suggested the 
onstants q1, q2 and q3 to take the values 1.5, 1.0 and q21 respe
-tively, and f ∗ is the 
riti
al 
oales
en
e parameter as des
ribed in Eq. (2.1.8) inse
tion 2.1.3. Gurson yield fun
tion 
ould be obtained from the above equation bysetting the 
onstants to unity. The evolution of void volume fra
tion is given as,

ḟ = ḟn + ḟg (2.2.15)Gologanu, Leblond & Devaux [33℄[34℄ porposed (GLD model) a Gurson based
onstitutive model whi
h a

ounted for void shape e�e
ts by 
onsidering a perfe
tlyplasti
 material with aligned spheroidal voids subje
ted to axisymmetri
 loading
ondition. Several extensions have been proposed for this 
lass of models to a
-
ount for ellipsoidal voids , �nal void 
oales
en
e and void rotations. Pardoen andHut
hinson [56℄ 
ombined GLD model with Thomason [60℄ 
oales
en
e model toa

urately predi
t the formation of 
ra
k prior to existen
e and the 
ra
k growthafter formation. Re
ently, S
hevyaerts [58℄ proposed a modi�
ation to a

ount forvoid orientation and void rotation by introdu
ing a new state variable to a

ountfor void rotation based on the work of Kailasam and Ponte Castañeda [43℄. But,this model was proved only for plane strain simple shear 
onditions.Based on type of nu
leation model, i.e. stress dependent or strain dependentnu
leation, 
orresponding formulation from Se
tion 2.1.1 should be used for ḟn, and16



ḟg is as given by Eq. (2.2.13). Fig.(2.2.1) shows the yield lo
us of a von Mises yieldfun
tion and Gurson yield fun
tion. It 
an be seen that as the porosity in
reases, theyield lo
us shrinks due to whi
h the stress 
arrying 
apa
ity of the material redu
es.
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von MisesFig. 2.2.1: Comparison of Yield surfa
e of von-Mises plasti
ity and Gurson model (atdi�erent void volume fra
tion)2.3 Theoreti
al Ba
kground2.3.1 Stresses and Strains2.3.1.1 Hydrostati
 and Deviatori
 StressesAny state of stress 
an be additively de
omposed into hydrostati
 stress (meanstress) σmI and deviatori
 stress s. In index notations it is given by [2℄,

σij = σmδij + sij (2.3.1)
σm =

σ11 + σ22 + σ33
3

(2.3.2)The hydrostati
 stress a

ounts for pure tension or 
ompression and it remains un-
hanged with a 
hange in 
oordinate system. While, deviatori
 stress a

ounts onlypure shear and the prin
ipal dire
tion of stresses 
oin
ides with the prin
ipal dire
-tions of the deviatori
 stresses. The deviatori
 stress invariants are given by,
J1 = s11 + s22 + s33

J2 = −(s11s22 + s22s33 + s33s11 − s212 − s223 − s231)

J3 = s11s22s33 − s11s
2
23 − s22s

2
31 − s33s

2
12 + 2s12s23s31The se
ond invariant 
an also expressed in terms of prin
ipal stresses as,

J2 =
1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
] (2.3.4)17



Stress triaxiality under di�erent loading 
onditions [46℄Loading 2D-Plane stress 3DUniaxial Tension 0.33 0.33Uniaxial Compression -0.33 -0.33Biaxial Tension 0.66 0.66Biaxial Compression -0.66 -0.66Triaxial Tension - ∞Triaxial Compressio - -∞Pure Shear 0 0Table 2.3.1: Stress triaxiality observed under di�erent loading 
onditions2.3.1.2 Equivalent StressEquivalent stress or von Mises stress is a stress at whi
h yielding is predi
ted to o
-
ur in isotropi
 du
tile materials. It is derived from the distortion-energy theory fordu
tile materials whi
h states that yielding o

urs when the distortion strain energyper unit volume rea
hes or ex
eeds the distortion strain energy per unit volume foryield in simple tension or 
ompression of the same material. In deviatori
 stressspa
e the equivalent stress is given [2℄,
σeq =

√

3

2
s : s =

√

3J2 (2.3.5)In terms of non prin
ipal stress 
omponents and prin
ipal stresses,
σeq =

1√
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]1/2

σeq =
1√
2

[
(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2 + 6(τ 2xy + τ 2yz + τ 2zx)
]1/22.3.1.3 Stress TriaxialityA material's strain and du
tile fra
ture strongly depends on the existing state ofstress in individual areas of the material. In most general 
ase, the state of stressis determined by the 6 stress 
omponents or 3 prin
ipal stresses. Using the stateof stress tensor to identify unequivo
ally individual stresses during shaping pro
essis 
umbersome. As a pra
ti
al approa
h, stress triaxiality (T ) is used to identifythe state of stress and is de�ned as the ratio of mean stress to equivalent stress [2℄.Stress triaxiality is varied over a wide range 
overing most pra
ti
al situations.

T =
σm
σeq

(2.3.7)The e�e
t of stress triaxiality on metals is strong and has been widely do
umented.Higher the triaxiality lower the fra
ture strain. Higher levels of stress triaxiality area
hieved in 
ra
ked spe
imens with the maximum expe
ted to be around 3.0 aheadof the 
ra
k tip of a strain hardening material under plane strain 
ondition [10℄.18



Fig. 2.3.1: Spe
imens used in du
tile fra
ture experiments with 
orresponding triaxialities[10℄

Fig. 2.3.2: Dependen
e of equivalent strain to fra
ture on stress triaxialities for aluminumalloy 2024-T351 [7℄2.3.1.4 Equivalent Plasti
 StrainTo a

ount for hardening, a quantity that des
ribes the deformation history of amaterial whi
h in
rease during plasti
 deformation, is required. Equivalent plasti
strain is most widely used quantity in this regard. For an isotropi
, von Mises ma-terial, the equivalent plasti
 strain εpeq is derived from equivalent plasti
 strain rate
˙εpeq whi
h is de�ned analogous to von Mises yield 
riterion as [2℄,

˙εeq
p =

√

2

3
ε̇pij ε̇

p
ij (2.3.8)The equivalent plasti
 strain is the integral of the equivalent plasti
 strain rate,

εpeq =

∫ t

0

ε̇peqdt (2.3.9)19



2.3.1.5 Obje
tive stress ratesA fundamental axiom of 
onstitutive theory is the prin
ipal of material obje
tivitywhi
h states that a physi
al quantity is obje
tive if it is independent of an observer.A quantity is said to be obje
tive if it satis�es the following 
ondition [11℄,Tensor: A∗ = QAQTve
tor: u∗ = Qus
alar: a∗ = awhere, Q is a rotation tensor, the 
omponents ( )∗ are in a rotated frame. Cau
hystress tensor (σ), Kir
hho� stress tensor (τ ) and se
ond Piola-Kir
hho� stress ten-sor (S) are material obje
tive stresses. But, the rates of obje
tive stress tensors arenot ne
essarily obje
tive. The material time derivative of Cau
hy stress tensor (σ)is not obje
tive, and is given by
σ̇ = Qσ̇QT + Q̇σQT +QσQ̇T (2.3.10)In order to ensure material obje
tivity in the formulation of �nite strain 
onstitutiveequations whi
h depend on stress rates, it is important to de�ne obje
tive stressrates. They are obtained by suitably modifying the material time derivative. Manydi�erent obje
tive rates of stress are proposed in the literature depending on the
hoi
e of rotation tensor. Jaumannn rate and Green Naghdi rate are used often in
onstitutive equations. Jaumann rate of Cau
hy stress (∇

σ
) is de�ned as [13℄,

∇
σ = σ̇ −Wσ + σW (2.3.11)where W is the skew-symmetri
 part of velo
ity gradient known as spin tensor.

W = Lskew, L = Ḟ F−1 (2.3.12)Green-Naghdi rate (∆
σ
) is obtained by pulling ba
k σ to referen
e 
on�guration,taking the material time derivative of σ in referen
e 
on�guration, and pushing for-ward the derivative to deformed 
on�guration [27℄.

∆
σ = σ̇ −Ωσ + σΩ (2.3.13)where Ω is the skew symmetri
 tensor whi
h depends on the rotation tensor R,given by,

Ω = ṘRT (2.3.14)2.3.2 Theory of Rate independent Elasto-Plasti
ityThe theory of plasti
ity provides a general framework for the 
ontinuum 
onstitu-tive des
ription of the behaviour of materials whi
h undergo permanent (plasti
)deformation. The theory deals with the 
al
ulation of stress and strain in plasti
deformations, and not, as a literal interpretation suggests, the physi
al des
ription20



of plasti
ity. There are two major out
omes of the theory - �rst, to develop expli
itrelation between stress and strain to agree with the experimental observations, andse
ond, to develop mathemati
al te
hniques to 
ompute non uniform distribution ofstress and strain in a plasti
ally deformed body [40℄. This theory is restri
ted tomaterials where the permanent deformation does not depend on the rate of loading,and is often referred to as rate independent theory of plasti
ity.In 
ase of elasti
 
onstitutive equation the stress σ depends only on the strain εand not on the history. But in 
ase of Elasto-Plasti
 
onstitutive material models,the stress also depends on the past history. Hen
e, additional variables know asinternal variables or plasti
 internal variables q are introdu
ed in to the 
onstitutiveequations. When the evolution of plasti
 strains is zero, the internal variables do notevolve. A 
lassi
al rate independent Plasti
ity 
onstitutive model has the followingbasi
 
omponents:a) De
omposition of the elastoplasti
 strainb) Elasti
 stress-strain relation
) a yield surfa
e, whi
h de�nes the elasti
 domaind) a plasti
 �ow rule de�ning the evolution of the plasti
 straine) a hardening lawf) loading/unloading 
onditiong) 
onsisten
y 
ondition2.3.2.1 Additive de
omposition of Strain tensorIt is assumed that the strain tensor 
an be de
omposed in to the elasti
 εe andplasti
 εp strain tensors. [2℄
ε = εe + εp (2.3.15)The elasti
 strain tensor from the above equation 
an be written as εe = ε − εp.The 
orresponding rate form of the additive split is given as,
ε̇ = ε̇e + ε̇p (2.3.16)From 
omputational point of view, the in
remental form is also very important. Thein
remental form of the strain tensor is given by,dε = dεe + dεp (2.3.17)21



Fig. 2.3.3: Uniaxial tensile stress strain 
urve of a linear isotropi
 hardening material withstrain de
omposition2.3.2.2 Elasti
 Stress strain relationThe stress tensor σ is related to the elasti
 strain εe by means of a stored en-ergy fun
tion W. For a linear elasti
 material , the energy fun
tion is given by,
W=1

2
εe : C : εe. Here C is the elasti
 modulus. The stress-strain relation is givenby [2℄,

σ = C(ε− εp) (2.3.18)In in
remental form, it is given bydσ = C(dε− dεp) (2.3.19)2.3.2.3 Yield Criterion and Yield Surfa
e [2℄Plasti
 �ow would o

ur when the stresses attain a 
ertain 
riti
al value. This 
riti-
al value is de�ned by the yield fun
tion Φ. The yield fun
tion is negative when thematerial deforms elasti
ally , and rea
hes zero when plasti
 �ow is imminent. Theplasti
 �ow o

urs when,
Φ(σ, q) = 0 (2.3.20)Any stress lying in the elasti
 domain or on its surfa
e is know as plasti
ally admis-sible domain, whi
h is given by,

Ē = {σ|Φ(σ, q) ≤ 0} (2.3.21)The yield surfa
e gives the set of stresses for whi
h plasti
 yielding may o

ur, andit de�nes the boundary of the elasti
 domain.2.3.2.4 Plasti
 Flow Rule [2℄The �ow rule de�nes the magnitude and dire
tion of the plasti
 strain in
rementdεp for a given in
rement of all stress 
omponents during yielding. The dire
tion of22



Fig. 2.3.4: Yield Surfa
e [2℄the plasti
 �ow is determined by the normality rule whi
h states that dεp is normalto the yield surfa
e at the point. The �ow rule is usually de�ned in terms of nonnegative, 
onvex �ow potential Ψ, whi
h is assumed to take the form,
Ψ = Ψ(σ, q) and Ψ(0, 0) = 0 (2.3.22)The �ow ve
tor R is de�ned as the derivative of the �ow potential with respe
t tostress tensor σ,

R =
∂Ψ

∂σ
(2.3.23)Models whi
h use yield fun
tion as the �ow potential ,i.e., Ψ = Φ, are 
alled asso-

Fig. 2.3.5: Geometri
al interpretation of normality rule [2℄
iative plasti
ity model. Most of the du
tile materials 
an be de�ned by asso
iativeplasti
 models. The �ow ve
tor in this 
ase is given by,
N =

∂Φ

∂σ
(2.3.24)23



The plasti
 �ow rule relates the evolution of plasti
 strain to the �ow ve
tor,
ε̇p = Λ̇N (2.3.25)dεp = dΛN (2.3.26)Where Λ̇ is know as plasti
 multiplier or the 
onsisten
y parameter. It providesmeans to determine the amount of plasti
 �ow and hardening su
h that the 
ondition

Φ = 0 is 
onserved.2.3.2.5 Hardening Law [2℄Due to plasti
 straining, the resistan
e of the material to plasti
 �ow in
reases.Whi
h implies that the size and shape of the yield surfa
e 
hanges due to plasti
loading. Pra
ti
ally this 
hange is arbitrary and is di�
ult to des
ribe a

urately.Hardening is often des
ribed by two types of hardening, isotropi
 hardening andkinemati
 hardening. In 
ase of isotropi
 hardening the yield surfa
e retains itsshape but only in
reases in size. But, in 
ase of kinemati
 hardening the yieldsurfa
e retains its shape and size, merely translates in stress spa
e.The hardening law de�nes the evolution of the hardening variables. It relates theevolution to a hardening modulus H .
q̇ = Λ̇H (2.3.27)

Fig. 2.3.6: Change of yield surfa
e during Isotropi
 and Kinemati
 Hardening [2℄2.3.2.6 Loading/Unloading and Consisten
y ConditionThe plasti
 multiplier Λ̇ introdu
ed in the �ow rule, is assumed to be a non negativeparameter. And, for any stress to be admissible, its absolute value must be lessthan or equal to the yield stress. These 
onditions impart the following unilateral
onstraints,
Λ̇ ≥ 0 (2.3.28a)
Φ ≤ 0 (2.3.28b)Within the elasti
 domain (Φ > 0), the in
rement of plasti
 strain is zero, whi
himplies Λ̇ = 0. And, on the yield surfa
e (Φ = 0), ε̇p 6= 0, whi
h implies Λ̇ > 0. This24



leads us to the additional 
onstraint,
Λ̇Φ = 0 (2.3.29)Eq. (2.3.28) and Eq. (2.3.29) together are know as the Kuhn-Tu
ker 
ondition.An expli
it equation for determination of the plasti
 multiplier has not beenintrodu
ed yet. As stated above the plasti
 multiplier vanishes during elasti
 strain-ing. But, during plasti
 straining it 
an assume any non-negative value. Taking aderivative of Eq. (2.3.29), we obtain,
Λ̇Φ̇ = 0 (2.3.30)Eq. (2.3.30) is referred to as 
onsisten
y 
ondition in literature. Additionally, onthe yield surfa
e, the plasti
 multiplier is non-zero. Hen
e,
Φ̇ = 0 (2.3.31)2.3.3 Finite Strain Plasti
ityAn extension of the in�nitesimal theory of plasti
ity to large strain is not straightforward, and a number of alternative formulations have been proposed. These formu-lations 
an be 
lassi�ed in to hypoelasti
-plasti
 model and the hyperelasti
-plasti
models. In hypoelasti
 based 
onstitutive formulations, the standard in�nitesimalelastoplasti
 models are extended to the �nite strain range by reformulating theoriginal evolution equations in terms of suitable obje
tive strain rates. In these for-mulations basi
 questions about proper kinemati
 des
ription of plasti
 �ow, 
har-a
terization of elasti
 behaviour and 
hoi
e of adequate stress and strain measuresarises. Also, spe
ial 
are must be exer
ised to preserve the fundamental prin
ipleof obje
tivity of the integration algorithm. This lead to the development of ob-je
tively in
remental algorithms whi
h add signi�
antly to the 
omputational 
ostof the analysis. Hyperelasti
 models were developed to over
ome the drawba
ks ofthe former. It is based on hyperelasti
 des
ription in 
onjun
tion with multipli
a-tive de
omposition of deformation gradient. In these models, the requirement ofin
remental obje
tivity is trivially satis�ed. Of late, hyperelasti
 formulations aregaining wide spread a

eptan
e and have been proven su

essful for wide range ofappli
ations [27℄.2.3.3.1 Hypoelasti
 - Plasti
 Models [27℄In this se
tion a brief overview of hypoelasti
-plasti
 formulation is provided, as the
onstitutive model dis
ussed in later se
tions is based on the same. A large 
lass ofhypoelasti
 materials is en
ompassed in the linear relation between obje
tive stressrate ◦

σ and rate of deformation D,
◦
σ =

◦

C : D (2.3.32)25



C is the 
orresponding forth order elasti
 moduli whi
h depends on the stress andmust be an obje
tive fun
tion. In a hypoelasti
-plasti
 model, the rate of deforma-tion is additively de
omposed into elasti
 and plasti
 
omponents,
D = De +Dp (2.3.33)The elasti
 response is,

◦
σ = C : (D −Dp) (2.3.34)The plasti
 �ow rule is given in terms of the plasti
 rate of deformation,
Dp = Λ̇

∂Φ

∂σ
= Λ̇N (2.3.35)The 
onsisten
y 
ondition,

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂q
.q̇ (2.3.36)

⇒ Φ̇ =
∂Φ

∂σ
:
(

◦
σ +Wσ − σW

)

+
∂Φ

∂q
.q̇ (2.3.37)For an isotropi
 model, the produ
t of σ and ∂Φ/∂σ are 
ommutative. Also, 
on-sidering the symmetry of σ, and skew-symmetry of W , it 
an shown that,

∂Φ

∂σ
: (Wσ − σW ) = 0 (2.3.38)Hen
e the 
onsisten
y 
ondition redu
es to,

Φ̇ =
∂Φ

∂σ
:

◦
σ +

∂Φ

∂q
.q̇ (2.3.39)For detailed explanation on Hypoelasti
ity and hyper-elasti
ity, please refer [27℄.2.3.4 Me
hani
s of HeterogeneousMaterials - A brief overviewAt a 
ertain (smaller) length s
ale, all real materials appear inhomogeneous, i.e.they 
onsist of distinguishable phases. These phases may be 
ra
ks, voids, parti
les,grain boundaries, �bres in a laminate, irregularities in a 
rystal latti
e, et
[35℄. Ea
hphase exhibits di�erent me
hani
al properties and orientations [45℄. The length s
aleat whi
h a material is 
onsidered inhomogeneous is not expli
it, it depends on thematerial and its appli
ation. For example, 
on
rete and wood exhibit inhomogeneityat a larger s
ale in 
omparison to high strength steel, whose properties are governedby a 
omplex mi
rostru
ture at a mu
h smaller s
ale. Me
hani
s of heterogeneousmaterial deals with the mi
rome
hani
al study of the behaviour of ea
h phase andits in�uen
e on overall properties of the material.26



2.3.4.1 Homogenization and Representative volume element (RVE)For a 
ertain mi
ros
opi
 volume of the material, the heterogeneous mi
rostru
ture
an be 
onsidered ma
ros
opi
ally as homogeneous, with spatially 
onstant e�e
tiveproperties, whi
h a

ounts for the mi
rostru
ture in an averaged sense. This mi
ro-to-ma
ro transition is know as homogenization[35℄. The e�e
tive properties of thehomogenized material are obtained from various mi
rome
hani
al material modelslike Voigt and Reuss, Self Consistent, Dilute Distribution, and Hashin- Shtrikman.The volume at whi
h homogenization has been introdu
ed, is known as Represen-tative Volume element (RVE) in the literature. It is an average representation ofthe entire material - stru
turally and statisti
ally. An RVE has to be statisti
allyhomogeneous, i.e. any arbitrary volume of the mi
rostru
ture with the same di-mensions of an RVE should lead to the same ma
ros
opi
 properties. To e�e
tivelyapply the 
on
ept of an RVE, one of the requirement is the existen
e of two lengths
ales - a ma
ros
opi
 length s
ale L, that de�nes the in�nitesimal vi
inity, and themi
ros
opi
 length s
ale l, that 
hara
terizes the smallest signi�
ant dimension ofthe mi
ro-heterogeneity [29℄. The ratio of the length s
ale is given by L/l >> 1.The size of an RVE must be mu
h greater than the 
hara
teristi
 length of the inho-mogeneity, but should be smaller in 
omparison to the ma
ro s
ale. Hen
e it mustsatisfy the 
ondition,
l << d << L (2.3.40)The assumption of statisti
al homogeneity allows the isolation of an RVE [45℄.

Fig. 2.3.7: Homogenization and Length s
ale [35℄There exists a de�nitive surfa
e displa
ement and surfa
e tra
tions on the boundaryof an RVE, and de�nitive stress �eld and strain �eld with in the RVE. The me
han-i
al behaviour of the e�e
tive homogenized material is des
ribed by a 
onstitutivelaw, whi
h is obtained from the detailed �elds of the RVE through an averagingpro
edure. When the ma
ros
opi
 homogeneous stress and homogeneous strains areapplied on the RVE of volume V , the average stress and average strain is de�nedas[8℄,
σ̄ij =

1

V

∫

V

σijdV (2.3.41)27



ε̄ij =
1

V

∫

V

εijdV (2.3.42)Average Stress and Average Strain TheoremTo obtain the lo
ally distributed stress and strain �elds in the RVE, we have to solvethe mi
ros
opi
 boundary value problem with suitable boundary 
onditions[29℄ ,divσ = 0 (2.3.43)A homogeneous strain �eld 
an be produ
ed by applying linear displa
ements onboundary S and a homogeneous stress �eld 
an be obtained by applying a tra
tion
ti,

ui(S) = ε0ijxj (2.3.44)
ti(S) = σ0

ijnj (2.3.45)where, ε0ij and σ0
ij are 
onstant homogeneous strain and stress respe
tively.The average strain theorem states that the ma
ros
opi
 strain (volumetri
 average)is equal to 
onstant homogeneous strain applied on the boundary.

ε̄ij = ε0ij (2.3.46)Analogously, the average stress theorem states that the ma
ros
opi
 stress (volu-metri
 average) is equal to the homogeneous mi
ros
opi
 stress at the boundary.
σ̄ij = σ0

ij (2.3.47)Hill ConditionThe underlying prin
ipal in most of the analyti
al models whi
h predi
t the homoge-nized ma
ros
ale response of heterogeneous material in small strain linear elasti
ityframework, is the Hill 
ondition. It states that the averaged ma
ros
opi
 strainenergy density is equal to mi
ros
opi
 strain energy density in an RVE [29℄.
〈σ · ε〉 = σ̄ · ε̄ (2.3.48)2.3.4.2 In
lusion and Eshelby TensorConsider a homogeneous linear elasti
 solid of volume V and surfa
e S with elasti

onstant Cijkl as shown in Fig.(2.3.8). The sub region V would exhibit a stress freepermanent deformation ε∗ij, if not for the 
onstraints imposed by the surroundingmaterial. Then the material in the V is known as in
lusion and the material in Ω isknown as matrix. It is to be noted that the in
lusion and the matrix are asso
iatedwith the same elasti
ity, if the elasti
ity are di�erent, then the material in V wouldbe know as inhomogeneity. The stress free strain ε∗ij is also known as eigenstrain.The eigenstrain in the matrix is equal to zero and is non zero in the in
lusion.For in�nitesimal deformation in linear elasti
ity, the total strain is the sum of elasti
28



strain and eigenstrain,
εij = εeij + ε∗ij (2.3.49)

Fig. 2.3.8: In
lusion and Matrix [66℄Eshelby [31℄ proposed a method to solve the elasti
 state of ellipsoidal in
lusionand the matrix with the help of a set of imaginary 
utting, straining and weldingoperations. He used the superposition prin
ipal of linear elasti
ity. The pro
edurethe author used is as follows,Step 1: Remove the in
lusion from the matrix, and allow it to undergo the stress-freestrain ε∗ij. The stress, strain and displa
ement in the matrix are zero at thisstage, and the stress in in
lusion is zero. The strain and displa
ement in thein
lusion are given by,
εij = ε∗ij and ui = ε∗ijxj (2.3.50)Step 2: Apply the surfa
e tra
tion −σ∗

ijnj to ∂V , to bring ba
k the in
lusion to itsoriginal shape. The Eigenstress is given by Hooke's law,
σ∗
ij = Cijklε

∗
ij (2.3.51)Now reweld the in
lusion into the matrix. The surfa
e for
e be
omes a layerof body for
e.Step 3: To relax the body for
e, apply a tra
tion of +σ∗

ijnj to ∂V . Now the body is freefrom external for
e but is in a state of self-stress. Let ucij be the 
onstraineddispla
ement due to afore mentioned tra
tion. This 
an be expressed in termsGreen's fun
tion of a elasti
 body.To obtain the stresses and strains in the entire body, the 
onstrained �eld mustbe determined. The 
onstrained strain is nothing but the total strain inside the in-
lusion and the matrix. The 
onstrained strain in the matrix or in
lusion is given by,
εcij =

1

2

(
uci,j + ucj,i

) (2.3.52)29



The stress in the matrix is derived from Hooke's law as,
σc
ij = Cijklε

c
kl (2.3.53)Eshelby's tensor S relates the 
onstrained strain in the in
lusion to eigenstrain,

εcij = Sijklε
∗
ij (2.3.54)Where, Sijkl is referred to as Eshelby's tensor. It satis�es minor symmetries, but itdoes not satisfy the major symmetry.

Sijkl = Sjikl = Sijlk, but Sijkl 6= Sklij (2.3.55)The stress in the in
lusion is given by,
σij = Cijkl(ε

c
kl − ε∗kl) (2.3.56)Eshelby[31℄ derived the 
omponents of S in terms of ellipti
 integrals of �rst andse
ond kinds of amplitude and modulus for an isotropi
 material with ellipsoidalin
lusion. Let the semi axes of the in
lusion be a, b and c whi
h is aligned withmaterial 
oordinate axis x, y and z and assume that a > b > c.

S1111 = Qa2Iaa +RIa,

S1122 = Qb2Iab +RIa,

S1133 = Qc2Iac +RIa,

S1212 = Q
1

2
(a2 + b2)Iab +R

1

2
(Ia + Ib),

S1112 = S1223 = S1232 = 0

Q =
3

8π(1− ν)
; R =

1− 2ν

8π(1− ν)
;

1

3
Q +R =

1

4π

Ia =
4πabc

(a2 − b2)
√
a2 − c2

(F (θ, k)−E(θ, k))

Ic =
4πabc

(b2 − c2)
√
a2 − c2

(
b
√
a2 − c2

ac
− E(θ, k)

)

θ = sin−1

√
(

1− c2

a2

)

, k =

√

a2 − b2

a2 − c2

F (θ, k) =

∫ θ

0

dw
√

1− k2 sin2w

E(θ, k) =

∫ θ

0

√

1− k2 sin2w dw

Ia + Ib + Ic = 4π,30



Iaa + Iab + Iac =
4π

3a2
,

a2Iaa + b2Iab + c2Iac = Ia,

Ib = 4π − Ia − Ic

Iab =
Ib − Ia

3(a2 − b2)
,

Iaa =
4π

3a2
− Iab − IacThe other non-zero 
omponents of the Eshelby tensor S and other 
omponentsof Iij are obtained by 
y
li
 permutations of the above formulas.Eshelby also proposed a relation for uniform rotation W c in the in
lusion interms of eigenstrain and Eshelby's rotation tensor Πijkl,

W c
ij = Πijklε

∗
kl (2.3.58)The rotation tensor Πijkl determines the spin of an isolated void in an in�nite lin-ear vis
ous matrix. The rotation tensor is symmetri
 with respe
t to the �rst twoindi
es and skew-symmetri
 with respe
t to the last two. Also, the only non-zero
omponents are Π1212,Π2323 & Π3131.

Π3131 = −Π1331 =
Ia − Ic
8π

(2.3.59)The above formulas for 
omputation of Eshelby tensors are valid only when the axesof the 
oordinate system are parallel to the prin
ipal axes of the ellipsoid[31℄. Forany other system, the new 
omponents of the tensors have to 
omputed using thegeneral transformation laws.2.3.4.3 Hashin-Shtrikman variational prin
ipal and boundsAs pointed out in the previous subse
tion, the e�e
tive properties of a material 
anbe derived using di�erent analyti
al methods. The e�e
tive property is not unique,as ea
h analyti
al method leads to a di�erent solution. It is important to know howgood the obtained e�e
tive properties are. One way to redu
e the spa
e of possiblesolution is to obtain the bounds in whi
h the properties 
ould possibly lie. Thevariational bounds are obtained from the prin
ipal of minimum potential. Hashin-Shtrikman bounds are mu
h narrow in 
omparison to other bounds like Voigt andReuss. In this study, we restri
t ourselves to Hashin-Shtrikman varational prin
ipaland bounds, pertaining to its usage in the 
onstitutive model.In this approa
h an appropriate auxiliary �eld whi
h represents the deviationfrom a referen
e solution is 
onsidered to derive the bounds as opposed to other31



methods where the total stress and strain �elds are 
onsidered. This allows formore a

urate approximations. A possible auxiliary �eld would be stress polariza-tion τ (x). It des
ribes the deviation of the true stress in a heterogeneous material
σij = Cijklεkl from the stress that would results when the true strain εkl a
ts on thehomogeneous 
omparison material [35℄.

τ(x) = {C(x)−C0}ε(x) (2.3.60)where, C0 is the elasti
 
onstant of the homogeneous 
omparison material. Thestrain ε(x) 
an be expressed in terms of �u
tuation strain ε̃ whi
h is de�ned as,
ε̃ = ε− ε0 (2.3.61)The stress di�eren
e is then de�ned as,

σ̃ = σ − σ0 = C(x)ε −C0(x)ε0 (2.3.62)The di�eren
e �eld must satisfy the governing equation,
σ̃ij,j = 0, ũi|∂V = 0 (2.3.63)The polarization is then given by,

τ(x) = {C(x)−C0} : {ε0 + ε̃} (2.3.64)The solution to the governing equation Eq. (2.3.63) 
an be formally written as
ε̃(τ (x)). This gives the equation for τ (x) whi
h depends on ma
rostrain,

−{C −C0}−1 : τ + ε̃(τ ) + ε0 = 0 (2.3.65)The above equation is equivalent to the Hashin-Shtrikman variational prin
iple givenby [35℄,
F (τ̂ ) =

1

V

∫

V

{−τ̂ : (C −C0)−1 : τ̂ + τ̂ : ε̃(τ̂ ) + 2τ̂ : ε0}dV = 0 (2.3.66)To obtain the e�e
tive properties C̃, the stationary value of the above fun
tionalhas to be 
omputed. The stationary value is obtained to be,
F (τ ) = ε0 :

[

C̃ −C0
]

: ε0 (2.3.67)
F (τ ) is maximum if (C −C0) is positive de�nite and minimum if (C −C0) is neg-ative de�nite. Due to the boundary 
onditions in Eq. (2.3.63), the average value ofstrain �u
tuation vanishes for any arbitrary τ̂ , i.e.

1

V

∫

V

〈τ̂ 〉 : ε̃dV = 0 (2.3.68)Hen
e, the variational prin
iple 
an be written as
F (τ̂ ) =

1

V

∫

V

{−τ̂ : (C −C0)−1 : τ̂ + (〈τ̂ 〉 − τ̂ ) : ε̃(τ̂ ) + 2τ̂ : ε0}dV = 0 (2.3.69)32



Let us apply the variational prin
iple to a matrix 
omprising of n distin
t typeof in
lusions, with moduli C(r), with volume 
on
entrations c(r). The moduli ofthe matrix is taken as Cn+1 with the volume 
on
entration c(n+1). The material istaken to be statisti
ally isotropi
 and stress polarization is given by a pie
e 
onstantapproximation τ̂ (x) = τr = const in V (r). When al the phases in the material areisotropi
 and the distribution of the in
lusions in the in�nite domain are isotropi
,then making use of isotropi
 Eshelby tensor S, the average �u
tuation strain ε̃r isgiven by,
ε̃r = −S : (C0)−1 : τr (2.3.70)The variational fun
tional then redu
es to,

F (τr) =
n+1∑

r=1

c(r)τr :
(
C(r) −C0

)−1
: τr−

n+1∑

r=1

c(r)(〈τ̂ 〉−τr) : S : (C0)−1 : τr+2〈τ̂ 〉 : ε0(2.3.71)The above equation 
an be reformulated as,
F (τr) =

n+1∑

r=1

c(r)τr :
[(
C(r) −C0

)−1
+ S : (C0)−1

]

: τr−

n+1∑

r=1

n+1∑

s=1

c(r)c(s)τr : S : (C0)−1 : τs − 2
n+1∑

r=1

c(r)τr : ε
0

(2.3.72)To obtain the bounds from Eq. (2.3.67), the values of τr should be 
hosen in su
hthat the fun
tional F (τr) be
omes extremal.
∂F

∂τr
= 0 (2.3.73)This yields n+ 1 equations for obtaining appropriate values of τr,

τr :
[(
C(r) −C0

)−1
+ S : (C0)−1

]

− 〈τ̂ 〉 : S : (C0)−1 = ε0 (2.3.74)The upper and lower bounds of the e�e
tive properties are obtained by substitutingthe above equation in Eq. (2.3.67). The e�e
tive elasti
 
onstant is given by,
C̃ =

(
n+1∑

r=1

c(r)C(r)
[
I+ S : (C0)−1 : (C(r) −C0)

]−1

)

×
(

n+1∑

s=1

c(s)
[
I+ S : (C0)−1 : (C(s) −C0)

]−1

)−1 (2.3.75)The above result is Walpole's generalization of Hashin and Shtrikman's results [68℄.In this study, determination of e�e
tive properties for a matrix 
ontaining va
-uous in
lusions (voids) is trivial. Let the volume V 
onsist of a matrix with elasti

onstant CM = C, and a va
uous in
lusion with elasti
 
onstant Cv = 0 and volumefra
tion c(v) = f . Also, let the elasti
 
onstant of the equivalent linear homogeneous33



volume be the same as that of the matrix in inhomogeneous volume V i.e. C0 = C.Then the equivalent elasti
 
onstant is derived as,
C̃ =

(

c(v)Cv

[
I+ S : C−1

M : (Cv −CM)
]−1

+ c(M)CM

[
I+ S : C−1

M : (CM −CM )
]−1
)

×
(

c(v)
[
I+ S : C−1

M : (Cv −CM)
]−1

+ c(M)
[
I+ S : C−1

M : (CM −CM)
]−1
)−1

C̃ =
(
(1− f)C : [I]−1)

(

f
[
I+ S : C−1

M : −CM

]−1
+ (1− f) [I]−1

)−1

C̃ =

[
f

(1− f)
[C : (I− S)]−1 +C−1

]−1 (2.3.76)The pioneering work of Hill[39℄ is very important in this 
ontext. Hill gave a theo-reti
al solution for the internal inhomogeneities of stress and strain in an arbitrarilydeformed aggregate of elasto-plasti
 
rystals. He de�ned the quantity Q as,
Q = C : (I− S) (2.3.77)

Q exhibits both minor and major symmetries. Substituting Q in Eq. (2.3.76),
C̃ =

[
f

(1− f)
Q−1 +C−1

]−1 (2.3.78)The inverse of the above relation, in terms of 
omplian
e tensor M̃ also holds. Thesolution for M̃ is later used in the 
onstitutive equation.
M̃ = M +

f

(1− f)
Q−1 (2.3.79)The analyti
al expression for 
al
ulation of non-zero 
omponents of Q for a 
oordi-nate system parallel to the prin
ipal axes of an ellipsoid is given by [4℄,

Q1111 =
µ

4π(1− ν)
(8π − Ia − 3a2Iaa), (2.3.80)

Q1122 =
µ

8π(1− ν)
(16πν + (1− 4ν)(Ia + Ib)− 3(a2 + b2)Iab), (2.3.81)

Q1212 =
µ

8π(1− ν)
(8π(1− ν)− (1− 2ν)(Ia + Ib)− 3(a2 + b2)Iab), (2.3.82)The variables in the formulae are des
ribed in Subse
tion(2.3.4.2).Hill[39℄ also introdu
ed the 
on
ept of 
on
etration-fa
tor tensors A and B, whi
hrelates the average strain rate and stress rate in an in
lusion r to overall uniformstrain rate and stress rate respe
tively.

D(r) = A(r) : D̄ and σ̇(r) = B(r) : ˙̄σ (2.3.83)34



The average strain-rate and spin over phase r from Hashin-Shtrikman variationalprin
ipal is given by [43℄,
D̄(r) = D̄ − 1

c(r)

n+1∑

s=1

E(rs)τ s and W̄ (r) = W̄ − 1

c(r)

n+1∑

s=1

F (rs)τ s (2.3.84)Where Ers and F rs are symmetri
 fourth-order tensors. In terms of strain 
on-
entration tensor A, the Hashin-Shtrikman estimate given in Eq. (2.3.75) 
an beexpressed as,
C̃ =

n+1∑

r=1

c(r)C(r)A(r) (2.3.85)where,
A(r) = Â(r)

(
n+1∑

s=1

c(s)Âs

)−1 (2.3.86)
Â = [I+ S : C0−1

: (C(r) −C0)]−1 (2.3.87)The strain rate 
on
entration tensor satis�es the relation,
n+1∑

r=1

c(r)A(r) = I (2.3.88)In our 
ase, the 
on
entration tensor in void phase is,
A(v) = Â(v)

[

(1− f)Â(M) + fÂ(v)
] (2.3.89)But,

Â(v) = [I− S]−1 and Â(M) = I (2.3.90)Hen
e, the 
on
entration tensor redu
es to
A(v) = [I− (1− f)S]−1 (2.3.91)Kailasam and Ponte Castañeda [43℄ introdu
ed the 
on
ept of spin-
on
entrationtensor C(r), analogous to strain-rate 
on
entration tensor
W̄ (r) = W̄ − C

(r)D̄ (2.3.92)where,
n+1∑

r=1

c(r)C(r) = 0 (2.3.93)For a two-phase parti
ulate 
omposite, the spin 
on
entration tensor in se
ond phaseis given by,
C
(2) = (1− c(2))Π

[
C(2) −C(1)

]
[A(2)] (2.3.94)35



For a porous material, the se
ond phase is va
uous, and 
onsidering our previousassumptions, the spin 
on
entration tensor redu
es to,
C
(2) = −(1− f)Π : A(2) (2.3.95)2.3.4.4 E�e
tive Properties of nonlinear heterogeneous materialThe rigorous bounds for e�e
tive properties of nonlinear heterogeneous materialswas �rst provided by Talbot and Willis who extended the Hashin-Shtrikman varia-tional prin
iples to in
lude nonlinear behaviour of materials[16℄. Ponte Castañedaextended the Talbot-Willis variational prin
iple to �nite elasti
ity whi
h providedbounds for wide range of nonlinear elasti
 materials. Later on he proposed an alter-nate variational prin
ipal that provided the estimates of e�e
tive energy potential ofnonlinear materials in terms of equivalent linear materials with the same mi
rostru
-tural distribution. This variational prin
ipal is the base for the 
onstitutive modeldes
ribed in the pre
eding se
tions.For an n phase matrix in volume V with ea
h phase o

upying a subdomain V (r),the stress potential U(σ,x) is expressed in terms of n homogeneous phase potentials

U (r)(σ) by,
U(σ,x) =

n∑

r=1

χ(r)(x)U (r)(σ) (2.3.96)where χ(r) is 
hara
teristi
 fun
tion of phase r,
χ(r) =

{

1 if x ∈ V (r)

0 otherwise (2.3.97)Here, the phases are assumed to be isotropi
, hen
e the potentials U (r)(σ) dependon stress through the three prin
ipal invariants. A further assumption is that thepotential depends on stress through the two invariants Equivalent stress (σeq) andmean stress (σm).The behaviour of nonlinear vis
ous material under large deformations is 
hara
ter-ized by the relation,
D =

∂U(σ,x)

∂σ
(2.3.98)

U 
an take the 
ommon power-law form,
U(σ,x) =

σy(x)

n+ 1

(
σeq
σy(x)

)n+1 (2.3.99)
n = 1 des
ribes a linear vis
ous material and n = ∞ des
ribes a rigid-perfe
tly J2plasti
 material with tensile yield stress σy. The e�e
tive stress-strain-rate relationis given by,

D̄ =
∂Ũ (σ̄)

∂σ̄
(2.3.100)36



where, σ̄ is the average stress, D̄ average strain rate, and Ũ is the e�e
tive energypotential. A

ording to prin
iple of minimum 
omplementary energy introdu
ed byHill, for a stri
tly 
onvex nonlinear potential U(σ,x), the e�e
tive potential mustsatisfy the following 
ondition,
Ũ(σ̄) = min

σ∈S(σ)

∫

V

U(σ,x)dv = inf
σ∈S(σ)

Ū(σ) (2.3.101)where,
S(σ) = {σ|∇ · σ = 0 in V, and σn = σ̄n on ∂V } (2.3.102)is the admissible stress 
orresponding to the uniform stress σ̄ on the boundary.Sin
e the e�e
tive stress-strain-rate relation depends is related to e�e
tive energypotential, the information regarding the e�e
tive energy potential Ũ(σ̄) is 
ru
ial.For linear behaviour (n = 1), the e�e
tive potential is given in terms of e�e
tiveelasti
ity tensor,

Ũ(σ̄) =
1

2
σ̄ · (C̃−1σ̄) (2.3.103)Similarly, for a rigid perfe
t solid, the e�e
tive stress potential is given by,

Ũ(σ̄) =

{

0 if σ̄ ∈ P̃ ,

∞ otherwise (2.3.104)The boundary P̃ is de�ned by the e�e
tive yield fun
tion,
Φ̃(σ̄) = 0 (2.3.105)whi
h gives us,

D̄ = Λ̇
∂Φ̃(σ̄)

∂σ̄
(2.3.106)Ponte Castañeda Variational Prin
ipleFor a nonlinear heterogeneous material, Ponte Castañeda [16℄ proposed a new vari-ational formulation for the e�e
tive potential in Eq.(2.3.101) in terms of e�e
tivepotential of equivalent 
lass of linear 
omparison heterogeneous material, with thesame phase distribution. This variational formulation gives the lower bounds for thee�e
tive stress potentials of nonlinear heterogeneous materials. The stress potentialfor ea
h phase of the linear 
omparison material is assumed to be quadrati
,

Û (r)(σ) =
1

6µ(r)
σ2
eq +

1

2κ(r)
σ2
m (2.3.107)where, µ(r) and κ(r) are the shear and bulk modulus of the linear isotropi
 
omposite.To a

ount for nonlinearity in the original stress potential, whi
h is of higher orderthan quadrati
 form, Ponte Castañeda de�ned the set of fun
tions,

V (r)(µ(r), κ(r)) = sup
σ

{

Û (r)(σ)− U (r)(σ)
} (2.3.108)37



where U (r)(σ) is the potential of a
tual nonlinear phase. The proposed variationalprin
ipal takes the form,
Ũ(σ̄) ≥ max

µ(r),κ(r)>0

{

˜̂
U(σ̄)−

n∑

r=1

c(r)V (r)(µ(r), κ(r))

} (2.3.109)
˜̂
U(σ̄) is the e�e
tive potential of the linear 
omparison material. The bounds of thee�e
tive potential of the linear 
omparison material 
an be obtained from the welldeveloped linear homogenization te
hniques. Eq.2.3.109 
an be reformulated as

Ũ(σ̄) ≥ max
µ(r),κ(r)>0

{

1

2
σ̄ · (C̃−1σ̄)−

n+1∑

r=1

c(r)V (r)(µ(r), κ(r))

} (2.3.110)
C̃−1 denotes the upper bound for e�e
tive elasti
ity tensor of the linear materialwith same distribution of mi
rostru
ture as the non linear material. For example,the Hashin Shtrikman bounds introdu
ed in the previous se
tion 
an be used for
C̃−1. Hen
e, a linear upper bound for e�e
tive elasti
ity tensor of an equivalentlinear material 
an be used to derive the lower bounds of e�e
tive stress potential ofthe nonlinear material. For a perfe
tly plasti
 and power law material, the variablesdepend only on shear modulus. Hen
e Eq.2.3.110 redu
es to,

Ũ(σ̄) ≥ max
µ(r)>0

{

1

2
σ̄ · (C̃−1σ̄)−

n+1∑

r=1

c(r)V (r)(µ(r))

} (2.3.111)The e�e
tive stress strain rate relation for a nonlinear material 
an be written as [43℄,
σ̄ = C̃(µ̂)D̄ (2.3.112)Where µ̂ is obtained from the stationary 
ondition,

1

2
σ̄ ·
[

δC̃−1(µ̂)σ̄
]

−
〈
∂V (µ̂)

∂µ
δµ

〉

= 0 (2.3.113)For a 2 phase nonlinear material with volume fra
tions c(1) and c(2), and stress poten-tials U (1)(σ) and U (2)(σ), the variational prin
iple gives the following lower bound,
Ũ(σ̄) ≥ max

µ(r),κ(r)>0

{

1

2
σ̄ · (C̃−1σ̄)−

2∑

r=1

c(r)V (r)(µ(r), κ(r))

} (2.3.114)In the 
ontext of this study, one of the phases in the nonlinear heterogeneousmaterial is 
onsidered to be va
uous (porous material) and the matrix is 
onsideredto be in
ompressible and isotropi
. The stress potential of the va
uous phase isgiven by U (2) = 0 and the stress potential of the matrix is assumed to be of the form
U (1)(σ) = ϕ(σ2

eq). Then stress potential of the linear 
omparison in
ompressiblematrix will take the form,
Û (1)(σ) =

1

6µ(1)
σ2
eq (2.3.115)38



The e�e
tive stress potential is then given by,
Ũ(σ̄) ≥

{
˜̂
U(σ̄)− c(1)V (1)

} (2.3.116)Whi
h 
an be reformulated into,
Ũ(σ̄) ≥ c(1)

{
1

c(1)
˜̂
U(σ̄)− V (1)(µ(r))

} (2.3.117)For a linear 
omposite with ellipsoidal mi
rostru
ture, Hashin-Shtrikman estimatesdes
ribed in the previous se
tion 
an be used for ˜̂
U . Also, let f be the volume fra
-tion of the va
uous phase, then (1 − f) is the volume fra
tion of the matrix. Theabove equation then redu
es to [19℄,

Ũ(σ̄) ≥ (1− f)ϕ

(
H

1− f

) (2.3.118)where,
1

6µ(1)
H =

1

2
σ̄ ·
{[

f

(1− f)
[C : (I− S)]−1 +C−1

]

σ̄

} (2.3.119)The lower bounds on the potentials provide the upper bounds on the ultimate yieldsurfa
e. The e�e
tive yield surfa
e 
an be obtained from Eq. (2.3.104), i.e., byequating the above equation to zero, and 
onsidering Eq. (2.3.105), we obtain theupper bound of yield surfa
e to be,
Φ̃ =

H

1− f
− σ2

y =
1

1− f
σ̄ · m̃σ̄ − σ2

y (2.3.120)2.4 Des
ription of the Constitutive ModelIn the following se
tion, the elasti
-plasti
 
onstitutive model for porous metals asproposed by Kailasam & Ponte Castañeda [42℄, and Aravas & Ponte Castañeda [4℄ isdes
ribed. The stru
ture followed in this se
tion is similar to the stru
ture followedby the authors in their original paper.The 
onstitutive model is an extension of initial models of Ponte Castañeda andgroup, whi
h was developed for a rigid-perfe
tly plasti
 material. For porous metals,it is assumed that the va
uous in
lusions do not store any energy and hen
e the elas-ti
 e�e
t in the material is solely due to the elasti
 properties of the matrix phase.In 
omparison to plasti
 deformation, the elasti
 deformation is 
onsidered to besmall. These 
onsiderations fa
ilitate the evaluation of elasti
 and plasti
 responseof the material individually, and to be 
lubbed later on to generate the 
ompleteelasti
-plasti
 response. It is observed that, under �nite deformation, the evolutionof mi
rostru
ture in the material is only due to plasti
 deformation [42℄.The 
onstitutive equations are derived using Ponte Castañeda variational prin-
iple introdu
ed in the previous se
tion, i.e. the e�e
tive properties of nonlinear39



porous material is obtained in terms of e�e
tive properties of an equivalent linear
omparison 
omposite with the same distribution of mi
rostru
ture. The e�e
tiveproperties of the equivalent linear 
omparison 
omposite is in turn obtained fromHashin-Shtrikamn estimates for parti
ulate mi
rostru
tures developed by Willis [68℄,and Ponte Castañeda & Willis [18℄.The va
uous in
lusions, referred to as voids hen
eforth, are assumed to be ini-tially ellipsoidal in shape and are uniformly distributed in an isotropi
 metal matrix.At every material point in the homogenized metal, a representative lo
al ellipsoidalvoid is de�ned. The porosity of the metal is quanti�ed by the void volume fra
tion f .
f =

Total volume of voidsVolume of the heterogeneous material (2.4.1)Let a,b and c be the half lengths of the prin
ipal axes of the voids, and n(1), n(2)and n(3) be the unit ve
tors along the prin
ipal axes. The unit ve
tor in the thirddire
tion satis�es,
n(3) = n(1) × n(2) (2.4.2)It is di�
ult and 
umbersome to a

ount for evolution of size of voids through thelengths of prin
ipal axes dire
tly. An approximation, whi
h is mu
h simpler and lesstime 
onsuming would be to 
onsider the aspe
t ratios of the prin
ipal axes. Theaspe
t ratios w1 and w2 are given by,

w1 =
c

a
and w2 =

c

b
(2.4.3)To make use of the simpli�ed linear-elasti
 estimates of Willis[68℄, it is ne
essary thatthe ellipsoidal in
lusions be aligned and the two point 
orrelation fun
tion whi
h de-s
ribes the distribution of void 
entres be ellipsoidal i.e. the shape and orientation ofthe two-point 
orrelation fun
tion whi
h des
ribes the distribution of voids is identi-
al to the shape and orientation of voids themselves. It is to be noted that the voidsand the distributions of their 
entres are assumed to have identi
al aspe
t ratios (inFig.(2.4.1) c/b = C/B). Due to this restri
tion, the voids and their distributionfun
tion evolve identi
ally when the material deforms. Hen
e, the porous materialmaintains lo
al orthotropi
 symmetry, with the axes of orthotropy aligned with theprin
ipal axes of voids.The internal variables that 
hara
terize the lo
al state of homogenized porous metalare,

s =
{
εpeq, f, w1, w2,n

(1),n(2),n(3)
} (2.4.4)The rate of deformation D at every point in the homogenized porous material isadditively de
omposed in to elasti
 and plasti
 part.

D = De +Dp (2.4.5)40



Fig. 2.4.1: Void Geometry and distribution of voids in the matrix [19℄2.4.1 Elasti
 Constitutive RelationHypoelasti
 formulation as introdu
ed in 2.3.3.1, is used to des
ribe the elasti
 partof rate-of-deformation tensor.
De = M e :

◦
σ (2.4.6)where M e is the e�e
tive 
omplian
e tensor and ◦

σ is a 
orotational rate of Cau
hystress tensor, 
orotational with the spin of the voids ω relative to a �xed laboratoryframe.
◦
σ = σ̇ − ω · σ + σ · ω (2.4.7)Due to the assumption of ellipsoidal symmetri
 distribution of voids, the generi
Hashin-Shtrikman estimate proposed by Willis[68℄ (Eq.2.3.79) 
ould be used for thee�e
tive 
omplian
e tensor (M̃ = M e).
M e = M +

f

(1− f)
Q−1 (2.4.8)Here Q is the Eshelby tensor de�ned in Eq.2.3.77 and M is the elasti
 
omplian
etensor of the matrix material, whi
h is given by the inverse of elasti
 modulus C.For an isotropi
 material,

C = 2µK + 3κJ =⇒ M =
1

2µ
K +

1

3κ
J =

1

2µ

(

K +
1− 2ν

1 + ν
J

) (2.4.9)
µ, κ and ν are the elasti
 shear modulus, bulk modulus and Poisson's ratio of thematrix. K and J are the volumetri
 and deviatori
 4th order identity tensors givenby, J =

1

3
I ⊗ I and K = I− 1

3
I ⊗ I (2.4.10)It is to be noted that I is the symmetri
 fourth order identity tensor, as the stressand strain tensors are in symmetri
 spa
e. A derivative of a symmetri
 se
ond ordertensor with respe
t to itself would result in a symmetri
 fourth order identity tensor.For any arbitrary fourth order identity tensor A,

∂Asym

∂Asym
= I (2.4.11)41



where,
Iijkl = (δikδjl + δilδjk)/2 (2.4.12)In voigt notation, J and K are given by,
J =











1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0











(2.4.13)
K =











2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0
−1/3 −1/3 2/3 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1/2











(2.4.14)Some important observations are,1) Eshelby tensor S satis�es the 
onditions for minor symmetries, and it dependson Poisson's ratio ν , aspe
t ratios (w1, w2) and void prin
ipal axes (n1, n2,
n3)2) Eshelby tensor Q exhibits minor and major symmetries, and depends on shearmodulus ν, Poisson's ratio ν , aspe
t ratios (w1, w2) and void prin
ipal axes(n1, n2, n3)3) The e�e
tive 
omplian
e tensor M e depends on void volume fra
tion f , andshape and orientation of the voids. The e�e
tive 
omplian
e tensor evolveswith 
hange in mi
ro-stru
ture hen
e it a

ounts for the in�uen
e of mi-
rostru
ture in the elasti
 regime.2.4.2 Yield Condition and Plasti
 Flow RuleUsing the variational prin
iple proposed by Ponte Castañeda [16℄, the upper boundfor e�e
tive yield fun
tion was derived in Se
tion 2.3.4.4 (Eq.2.3.120). Here, thee�e
tive yield fun
tion depends on the internal variables, and 
onsidering isotropi
hardening of the matrix material, the e�e
tive yield fun
tion is given by,

Φ(σ, s) =
1

1− f
σ : m : σ − σ2

y(ε
p
eq) (2.4.15)It is important to note that the yield fun
tion is isotropi
. σy is the yield fun
tion ofthe matrix under uniaxial tension. The yield fun
tion depends of equivalent plasti
strain εpeq whi
h a

ounts for the isotropi
 hardening. m is a normalized e�e
tivevis
ous 
omplian
e tensor of linear 
omparison porous material. Sin
e the matrixphase is taken to be in
ompressible in plasti
 region, Poisson's ratio has to be set to42



ν = 1/2.
m = m

(
f, w1, w2,n

(1),n(2),n(3)
)

= 3µM e|ν=1/2

= 3µ

(
1

2µ

(

K +
1− 2ν

1 + ν
J

)

+
f

(1− f)
Q−1

)

ν=1/2

(2.4.16)Hen
e,
m =

3

2
K +

3f

1− f
µQ−1|ν=1/2 (2.4.17)The numeri
al 
ompli
ations in evaluatingQ at ν = 1/2 
an be avoided by using theexpli
it equations given in Se
tion 2.3.4. The plasti
 rate-of-deformation is obtainedfrom the normality rule (Eq.2.3.35),

Dp = Λ̇N (2.4.18)where,
N =

∂Φ

∂σ
=

2

1− f
m : σ (2.4.19)Spe
ial Case: Spheri
al VoidsThe yield fun
tion 
an be redu
ed to a simpler form when the aspe
t ratios are

w1 = w2 = 1. In this 
ase the Eshelby tensor Q is given by [4℄,
Q(µ, ν) = 2µ

(
7− 5ν

15(1− ν)
K +

2(1 + ν)

3(1− ν)
J

) (2.4.20)Therefore,
Q−1(µ, ν) =

1

2µ

(
15(1− ν)

7− 5ν
K +

3(1− ν)

2(1 + ν)
J

) (2.4.21)
Q−1(µ, ν)|ν=1/2 =

1

2µ

(
5

3
K +

1

2
J

) (2.4.22)Substituting in Eq.2.4.17, for spheri
al 
ase we obtain,
m =

3 + 2f

2(1− f)
K +

3f

4(1− f)
J (2.4.23)The yield fun
tion is then given by,

Φ(σ, s) =
1

1− f
σ :

[
3 + 2f

2(1− f)
K +

3f

4(1− f)
J

]

: σ − σ2
y(ε

p
eq) (2.4.24)Using tensor operations, it 
an be shown that,

σ : J : σ = 3σ2
m and σ : K : σ =

2

3
σ2
eq (2.4.25)43



The yield fun
tion redu
es to,
Φ(σ, s) =

(

1 +
2

3
f

)(
σeq

1− f

)2

+
9

4
f

(
σm

1− f

)2

− σ2
y(ε

p
eq) (2.4.26)2.4.3 Evolution of Internal VariablesWith deformation of the material, the internal variables evolve and alter the ma
ro-s
opi
 behaviour of the material i.e., the mi
rostru
ture evolution are 
oupled tothe 
onstitutive relations. Here, the internal variables are assumed to evolve onlyunder plasti
 deformation. This approximation is justi�ed, be
ause the elasti
 de-formation in porous metals are to small. The evolution equations are determinedfrom the kinemati
 relations. It is also assumed that the evolution of the internalvariables are 
hara
terized by the 
orresponding average of plasti
 deformation rateand spin in the voids. The averages are obtained from the homogenization pro
eduredis
ussed in the previous se
tions.2.4.3.1 Evolution of equivalent plasti
 strainMa
ros
opi
 plasti
 work in material is given by,

W = σ : Dp = Λ̇σ : N (2.4.27)Plasti
 work on the mi
ros
opi
 level depends on the rate of equivalent plasti
 strain,
W̄ = (1− f)σy(ε

p
eq)ε̇

p
eq (2.4.28)Due to equilibrium, the work done on the ma
ros
opi
 level should be equal to the
orresponding mi
ros
opi
 work. The evolution of equivalent plasti
 strain is ob-tained from this 
ondition,

ε̇peq = Λ̇
σ : N

(1− f)σy(ε
p
eq)

= Λ̇g1(σ, s) (2.4.29)where,
g1(σ, s) =

σ : N

(1− f)σy(ε
p
eq)

(2.4.30)2.4.3.2 Evolution of void volume fra
tionEvolution equation of void volume fra
tion 
an be derived from the 
ontinuity equa-tion. For any material point x in 
ontinuum, balan
e of mass is given by [11℄,
ρ̇+ ρdiv(ẋ) = 0 (2.4.31)Sin
e the va
uous phase hs zero density, density of the heterogeneous material isequal to the density of the matrix. The e�e
tive density per unit volume of theheterogeneous material in terms of density of the matrix phase ρM ,
ρ̄ = (1− f)ρM (2.4.32)44



Therefore,
˙̄ρ = −ḟρM + (1− f)ρ̇M (2.4.33)Sin
e matrix material is in
ompressible in plasti
 region, the rate of 
hange of den-sity of the matrix would be zero (ρ̇M = 0). Hen
e,

˙̄ρ = −ḟρM (2.4.34)Also, div(ẋ) = ∇ẋ · I = L · I = tra
e(L) (2.4.35)But, tra
e(L) = tr(D+W )

= tr(D), sin
e tr(W ) = 0
(2.4.36)Substituting in balan
e of mass, we obtain,

−ḟ ρM + (1− f) ρM tr(D) = 0

ḟ = (1− f)tr(D)Change of void volume fra
tion due to elasti
 deformation is assumed to be smalland re
overable. Hen
e, ḟ depends only on the plasti
 rate of deformation,
ḟ = (1− f)tr(Dp)

= (1− f)Dp
kk

= Λ̇(1− f)Nkk

= Λ̇g2(σ, s)

(2.4.38)Where,
g2(σ, s) = (1− f)Nkk (2.4.39)The initial VAR model does not a

ount for void nu
leation. In this study, strain
ontrolled void nu
leation was 
oupled with the 
onstitutive equation. The voidevolution due to void growth is given by

ḟg = Λ̇g2(σ, s) (2.4.40)And the strain 
ontrolled nu
leation as des
ribed in Se
tion 2.1 is given by
ḟn = Aε̇peq, A =

fN

SN

√
2π

exp[−1

2

(
εpeq − εN

SN

)2
] (2.4.41)The evolution of porosity is then

ḟ = ḟg + ḟn (2.4.42)45



2.4.3.3 Evolution of lo
al aspe
t ratiosTo determine the evolution equations of aspe
t ratios, it is important to re
all the
omputation of average deformation rate in phase r of a heterogeneous material in-trodu
ed in Se
tion 2.3.4.3. A

ordingly, the average deformation rate in the lo
alellipsoidal void Dv is given by,
Dv = A : Dp (2.4.43)Where the 
on
entration tensor A is evaluated at ν = 1/2.

A =
[
I− (1− f)S|ν=1/2

] (2.4.44)Applying produ
t rule to aspe
t ratio w1,
ẇ1 =

( c

a

)′

=
ċ

a
− c

a2
ȧ

=
c

a

(
ċ

c
− ȧ

a

)

= w1

(
ċ

c
− ȧ

a

)

(2.4.45)
ċ is nothing but the plasti
 rate-of-deformation in the void along prin
ipal axis n(3).Hen
e, the above equation 
an be reformulated in terms of rate of deformation ofvoids [4℄,

ẇ1 = w1

(
n(3) ·Dv · n(3) − n(1) ·Dv · n(1)

)

= w1(n
(3)n(3) − n(1)n(1)) : Dv

(2.4.46)Substituting Eq.2.4.43 we get,
ẇ1 = Λ̇w1(n

(3)n(3) − n(1)n(1)) : A : N = Λ̇g3(σ, s) (2.4.47)where,
g3(σ, s) = w1(n

(3)n(3) − n(1)n(1)) : A : N (2.4.48)Similarly, the evolution equation for w2 is determined to be,
ẇ2 = Λ̇w2(n

(3)n(3) − n(2)n(2)) : A : N = Λ̇g4(σ, s) (2.4.49)where,
g4(σ, s) = w2(n

(3)n(3) − n(2)n(2)) : A : N (2.4.50)2.4.3.4 Evolution of Orientation Ve
torsThe average spin in the lo
al ellipsoidal void W v is given by Eq.2.3.92.
W v = W − C : Dp (2.4.51)46



where, W is the spin of the 
ontinuum and C is the spin 
on
entration tensor asintrodu
ed previously.
C = −(1− f)Π : A (2.4.52)

Π is the Eshelby rotation tensor whi
h depends on aspe
t ratios and orientationve
tors.The evolution of unit ve
tors of the ellipsoid along the prin
ipal axes is given by,
ṅ(i) = ω · n(i) (2.4.53)

ω is an antisymmetri
 tensor whi
h represents the spin of Eulerian axes of averagedeformation of the void. The 
hange of void orientation whi
h is 
orotational to thespin of the voids is given by,
◦
n

(i)
= 0 (2.4.54)For a 
oordinate frame 
oin
ident with the lo
al prin
ipal axes of the voids, ω isgiven by [4℄,

ω
′

ij =W v′

ij +
w2

i + w2
j

w2
i − w2

j

Dv′

ij , i 6= j, wi 6= wj (2.4.55)With respe
t to a �xed Cartesian 
oordinate system (global 
oordinate system), ωis given by,
ω = W v +

1

2

3∑

i,j=1

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : Dv

]
n(i)n(j),

i 6= j, wi 6= wj , w3 = 1

(2.4.56)Substituting for void rate of deformationDv (Eq.2.4.43) and void spinW v (Eq.2.4.51),the above equation redu
es to,
ω = W − Λ̇

[

C : N − 1

2

3∑

i,j=1

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : A : N

]
n(i)n(j)

]

,

i 6= j, wi 6= wj, w3 = 1

= W −W p (2.4.57)whereWp is know as the plasti
 spin of the 
ontinuum relative to the mi
rostru
ture,
Wp = Λ̇Ωp (2.4.58a)

Ωp = C : N − 1

2

3∑

i,j=1

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : A : N

]
n(i)n(j),

i 6= j, wi 6= wj, w3 = 1

(2.4.58b)47



For a 
oordinate system whi
h is aligned along the prin
ipal axes of the void, the
omponents of Ωp are given by,
Ωp′

ij =

(

C ′

ijkl −
w2

i + w2
j

w2
i − w2

j

A
′

ijkl

)

N
′

kl,

i 6= j, wi 6= wj , w3 = 1, (no sum over i & j) (2.4.59)When any two aspe
t ratios are equal (for example w1 = w2 or w1 = w3), thematerial be
omes lo
ally transversely isotropi
 along the third dire
tion, and Wpbe
omes indeterminate. Under su
h 
onditions the 
orresponding 
omponent of Wp
an be set to zero without loss of a

ura
y [4℄. For spe
ial 
ase when the voids arespheri
al, Π = 0, C = 0 and Wp = 0. In these 
ases the material is lo
ally isotropi
.During implementation in FE-program, it is important to take 
are of su
h spe
ial
onditions to avoid numeri
al os
illations and 
onvergen
e issues.2.4.3.5 Computation of Plasti
 MultiplierThe plasti
 multiplier is obtained from the 
onsisten
y 
ondition of the yield fun
-tion. The 
onsisten
y 
ondition states that the time derivative of yield fun
tionshould be stationary.
Φ̇(σ, s) = 0 (2.4.60)

Φ̇ =
∂Φ

∂σ
: σ̇ +

∂Φ

∂εpeq
ε̇peq +

∂Φ

∂f
ḟ +

2∑

n=1

∂Φ

∂wn
ẇn +

3∑

p=1

∂Φ

∂n(p)
ṅ(p) (2.4.61)Sin
e the yield fun
tion is isotropi
, the 
onsisten
y 
ondition 
an be written interms of 
orotational derivatives as,

Φ̇ =
∂Φ

∂σ
:

◦
σ +

∂Φ

∂εpeq
ε̇peq +

∂Φ

∂f
ḟ +

2∑

n=1

∂Φ

∂wn
ẇn +

3∑

p=1

∂Φ

∂n(p)

◦
n

(p) (2.4.62)Substituting Eq.2.4.54 we obtain,
Φ̇ =

∂Φ

∂σ
:

◦
σ +

∂Φ

∂εpeq
ε̇peq +

∂Φ

∂f
ḟ +

2∑

n=1

∂Φ

∂wn
ẇn

= N :
◦
σ +

∂Φ

∂εpeq
Λ̇g1 +

∂Φ

∂f
Λ̇g2 +

∂Φ

∂w1
Λ̇g3 +

∂Φ

∂w2
Λ̇g4

= N :
◦
σ − Λ̇H

(2.4.63)where H is de�ned as the hardening modulus given by,
H = −

(
∂Φ

∂εpeq
g1 +

∂Φ

∂f
g2 +

∂Φ

∂w1
g3 +

∂Φ

∂w2
g4

) (2.4.64)When H > 0, the material is said to instantaneously harden, the yield surfa
e ex-pands. When H < 0, the material softens, the yield surfa
e shrinks. When H = 0,48



the material exhibits instantaneous perfe
t-plasti
 behaviour. Finally, the plasti
multiplier is given by,
Λ̇ =

1

H
N :

◦
σ forH 6= 0 (2.4.65)We know that the e�e
tive yield fun
tion is given by,

Φ(σ, s) =
1

1− f
σ : m : σ − σ2

y(ε
p
eq)

=
1

1− f
σ :

(
3

2
K +

3f

1− f
µQ−1|ν=1/2

)

: σ − σ2
y(ε

p
eq)

(2.4.66)Taking the derivative of yield fun
tion with respe
t to void volume fra
tion f usingprodu
t rule, and by simplifying the equation further, we obtain,
∂Φ

∂f
=

3

(1− f)2
σ :

(
1

2
K +

1 + f

1− f
µQ−1|ν=1/2

)

: σ (2.4.67)The derivatives of yield fun
tion with respe
t to aspe
t ratios are dis
ussed in detailby Aravas and Ponte Castañeda [4℄.2.4.3.6 Rate form of the elastoplasti
 equationsFrom the elasti
 
onstitutive relation we have,
De = M e :

◦
σ ⇒ ◦

σ = Ce : De (2.4.68)But, the elasti
 rate-of-deformation is given by,
De = D −Dp = D − Λ̇N (2.4.69)Hen
e,

◦
σ = Ce : D − Λ̇Ce : N

= Ce : D − 1

H
N :

◦
σCe : N

= Ce : D − 1

L
(N : Ce : D)Ce : N

=

(

Ce − 1

L
Ce : NN : Ce

)

: D

(2.4.70)
where,

L = H +N : Ce : N (2.4.71)49



2.5 A note on numeri
al issues and extension ofABAQUS VUMAT Subroutine2.5.1 Numeri
al IssuesThe VAR 
onstitutive model was implemented in ABAQUS-Expli
it through VU-MAT subroutine at Fraunhofer IWM, Freiburg. However, this subroutine was notquali�ed for metals undergoing large deformations, as in the 
ase of metal formingappli
ations. In this se
tion, the numeri
al issues en
ountered during this spe
i�
appli
ation is dis
ussed.2.5.1.1 Element ClosureWhen metals with low initial porosity were subje
ted to extreme 
ompression loads,i.e. when the ratio of �nal height of the spe
imen to its initial height was less than
0.5, the elements distorted abnormally, and 
ollapsed. This phenomenon is know asElement 
losure in this 
ontext. Fig.(2.5.1) des
ribes the phenomenon of element
losure in an axisymmetri
 upsetting test simulation. For this simulation, axisym-metri
 
ontinuum stress/displa
ement, 4-node, redu
ed-integration CAX4R elementis used.It was further observed in other types of Axisymmetri
 and 3D redu
ed and full

Fig. 2.5.1: Element 
losure phenomenonintegration elements. Use of full integration element rules out the possibility of hourglass e�e
t [64℄, whi
h rules out hour glass e�e
t as the possible 
ause. It was de-termined that this phenomenon was due to improper evaluation of Eshelby tensors.Here, the Eshelby tensors in the void frame are obtained by evaluating the integralequations [4℄ in Mathemati
a software pa
kage, for a 
ertain range and distributionof aspe
t ratios. This data set is made available to the subroutine. For unevaluatedaspe
t ratios within the range, the Eshelby tensors are obtained by linear interpo-lation within the subroutine.
S =

1

4πw1w2

∫

|ξ|=1

H(ξ) : C
dS(ξ)

|Z−1 · ξ|3 (2.5.1)50



where
(H(ξ) : C)ijkl(ξ, ν) =

1

2|ξ|2 (δikξjξl + δjkξiξl + δilξjξk + δjlξiξk)

− 1

|ξ|4
1

1− ν
ξiξjξkξl +

1

|ξ|2
ν

1− ν
ξiξjδkl

(2.5.2a)
Z = w1n

(1)n(1) + w2n
(2)n(2) + n(3)n(3) (2.5.2b)Eshelby tensor Π is given by

Π =
1

4πw1w2

∫

|ξ=1|

Ĥ(ξ) : C
dS(ξ)

|Z−1 · ξ|3 (2.5.3)where
(Ĥ(ξ) : C)ijkl(ξ) =

1

2|ξ|2 (δikξjξl − δjkξiξl + δilξjξk − δjlξiξk) (2.5.4)And the Eshelby tensor Q is written in the form
1

µ
Q =

1

4πw1w2

∫

|ξ|=1

E(ξ)
dS(ξ)

|Z−1 · ξ|3 (2.5.5)where
Eijkl(ξ, ν) = δikδjl + δilδjk −

1

|xi|2 (δikξjξl + δjkξiξl + δilξjξk + δjlξiξk)

− 2ν

1− ν

[

δijδkl −
1

|ξ|2 (δijξkξl + δklξiξj)

]

+
2

|ξ|4
1

1− ν
ξiξjξkξl

(2.5.6)Under large strains, the aspe
t ratios of the voids were observed to ex
eed theranges used to 
al
ulate the Eshelby tensors, whi
h lead to numeri
al di�
ulties.To troubleshoot this issue, the voids are assumed to be 
losed if the aspe
t ratiosare greater than 102 or less than 10−2. On
e the aspe
t ratios attain these limits, thesubroutine skips the 
al
ulation of Eshelby tensors and the evolution of void aspe
tratios are set to zero (g3 = g4 = 0). Also, a lower limit of 10−4 is set for void volumefra
tion (f), as suggested by Kailasam and Ponte Castañeda [42℄. Fig.(2.5.2) showsthat the element 
losure phenomenon is resolved.
Fig. 2.5.2: Upsetting test simulation whi
h depi
ts the resolved element 
losure phe-nomenon 51



2.5.1.2 Convergen
e issue of Cutting Plane algorithmAs stated previously, the subroutine uses 
utting plane algorithm to solve the lo
alproblem of plasti
ity. Sin
e the time step width in expli
it simulations are small (oforder 10−7), the number of 
utting plane iterations required for 
onvergen
e shouldbe in the range of 3-5. In the subroutine, the maximum number of possible 
uttingplane iterations for ea
h time step is provided as an input variable. On
e this limitis rea
hed, the numeri
al 
al
ulation exits the 
utting plane loop and the 
onvergedresults from the previous time step are assumed to be the solution for the 
urrenttime step as well. This approximation is justi�ed as the time step width is small, anddoesn't lead to abrupt 
hanges in results. In the following simulations, a maximumlimit of 20 iterations are set for the 
utting plane algorithm.Irrespe
tive of type of loading (Tension or Compression), it was observed thatthe 
utting plane algorithm failed to 
onverge when the aspe
t ratios were equal to1 i.e. when w1 or w2 = 1 and the results obtained were not plausible. Fig.(2.5.3)and Fig.(2.5.4) des
ribe the numeri
al results of Upsetting and Uniaxial Tensile testrespe
tively. It 
an be observed that the material points where the aspe
t ratiosare 
lose to 1, require more iterations in 
utting plane loop, and eventually leads todivergen
e of the solution.

Fig. 2.5.3: Simulation results of upsetting test, whi
h des
ribes the numeri
al os
illationsdue to non 
onvergen
e of 
utting plane algorithm. a)Aspe
t ratio w1 b)Fieldoutput of von mises stress distribution in elements 
) Number of 
utting planeiterations required at ea
h material pointThis issue is linked to the 
al
ulation of the plasti
 spin W p given by Eq.2.4.58a.In the 
al
ulation of Ωp, the imaginary third aspe
t ratio (w3) is taken as 1.
Ωp = C : N − 1

2

3∑

i,j=1

w2
i + w2

j

w2
i − w2

j

[
(n(i)n(j) + n(j)n(i)) : A : N

]
n(i)n(j),

i 6= j, wi 6= wj , w3 = 1

(2.5.7)At any point during the 
al
ulation, when the aspe
t ratios are equal to ea
h other( w1 = 1 or w2 = 1 or w1 = w2 ), the denominator in the se
ond term is equal52



Fig. 2.5.4: Simulation results of uniaxial tensile test, whi
h des
ribes the numeri
al os-
illations due to non 
onvergen
e of 
utting plane algorithm. a) Aspe
t ratio
w1 b) Number of 
utting plane iterations required at ea
h material point 
)Field output of von mises stress distribution in elementsto zero, whi
h results in indeterminate Wp. To over
ome this numeri
al issue, theplasti
 spin tensor Wp and the 
orresponding terms of Cijkl are set to zero when thedi�eren
e between the aspe
t ratios are less than 10−2.

W p = 0 and Cijkl = 0 when wi − wj ≤ 10−2, i 6= j (2.5.8)Also, for the 
ase where the voids are spheri
al, the yield surfa
e is taken to be theequation derived in Se
tion 2.4.2 [4℄.
Φ(σ, s) =

(

1 +
2

3
f

)(
σeq

1− f

)2

+
9

4
f

(
σm

1− f

)2

− σ2
y(ε

p
eq)when wi − 1.0 ≤ 10−2, i = 1, 2

(2.5.9)2.5.1.3 Example from literatureTo measure the a

ura
y of the subroutine with 
hanges, a plane strain extrusionpro
ess des
ribed in Kailasam and Ponte Castañeda [42℄ is simulated. The para-metri
 dimension of the extruded part is des
ribed in Fig.(2.5.5).
Fig. 2.5.5: Dimension of Extruded partA material with initial porosity of f = 0.15 with spheri
al voids is used for thissimulation. The matrix material is 
onsidered to be elasti
 - perfe
t plasti
 witha Young's modulus of E = 300σy and Poisson's ratio ν = 0.49. The spe
imen is
onsidered to be symmetri
 about the axes. The e�e
t of fristion between the metaland die interfa
e is negle
ted. The material deforms in n(2) - n(3) plane. Fig.(2.5.6)gives a 
omparison of void volume fra
tion between the old version of subroutine,53



Fig. 2.5.6: Void volume fra
tion a)Old version of subroutine b) revised version of sub-routine 
) literature [42℄the revised version and the results from literature.The variation of porosity along the bottom row of elements along the extrudedspe
imen is shown in Fig.(2.5.7). This plot is 
losely in agreement with the resultsfrom literature. The void volume fra
tion predi
ted by VAR model is lower thanthe Gurson model. The VAR model predi
ts that the voids 
lose even before exitingthe die. The distribution of aspe
t ratio in the extruded part is given in Fig.(2.5.8).It is observed that the aspe
t ratios of the voids are very small after extrusion andthe longest axis of the void is aligned in the dire
tion of extrusion. It 
an been seenthat the results obtained from the revised version of subroutine agree 
losely to theliterature results.

Fig. 2.5.7: Variation of void volume fra
tion along the bottom row of elements a) VU-MAT subroutine b) Literature 54



Fig. 2.5.8: Aspe
t ratios a) Older version of subroutine b)revised version of subroutine
) literature [42℄2.5.2 Extension of VUMAT Subroutine2.5.2.1 Hardening lawsFor any simulation involving plasti
ity, it is important to provide the behaviour ofthe material in plasti
 region to the FE program i.e. the right 
onstitutive equationwhi
h des
ribes the plasti
 behaviour of the material must be used. The 
onstitutiveequations 
an be broadly 
lassi�ed into power laws(Ludwi
k's law and Swift law)and saturation laws(Vo
e, Ho
kett-Sherby). Power laws tend to over predi
t thestresses at high strains, on the 
ontrary, saturation laws under predi
t the stresses.To in
rease the s
ope of the subroutine, various isotropi
 hardening laws were
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implemented. In this study, only hardening laws whi
h are independent of strainrate and temperature are 
onsidered. For the evolution of the internal variables, itis also important to provide the derivative of equivalent yield stress with respe
t toequivalent plasti
 strain. The following hardening laws were implemented.a) Swift law
σy = A(ε0 + εpeq)

n (2.5.10)
∂σy
∂εpeq

=
σyn

ε0 + εpeq
(2.5.11)where A, ε0 and n are material parameters.b) Ho
kett and Sherby Law

σy = A− B
[
1− exp

{
−C(εpeq)n

}] (2.5.12)
∂σy
∂εpeq

= B
[
1− exp

{
−C(εpeq)n

}] [
C n (εpeq)

(n−1)
] (2.5.13)where A, B, C and n are the material parameters.
) Combination of Ghosh and Ho
kett-Sherby Law

σy = α
[
A− (A−B) exp

{
−C(εpeq)n

}]

+ (1− α)
[
AG(BG + εpeq)

nG − CG

] (2.5.14)
∂σy
∂εpeq

= α
[
(A− B) exp

{
−C(εpeq)n

} (
C n (εpeq)

(n−1)
)]

+ (1− α)
[
AG(BG + εpeq)

(nG−1)nG

]
(2.5.15)where α is the weighting fa
torThe material parameters in the hardening laws are obtained from experiments likeuniaxial tensile test, upsetting test, et
.2.5.2.2 Coales
en
e CriteriaThomason based 
oales
en
e 
riteria as proposed by Pardoen and Hut
hinson [56℄and Benzerga [9℄ were implemented in the subroutine. As the 
oales
en
e 
riteriadepends on aspe
t ratios, the 
riti
al value of the 
oales
en
e 
riteria were evaluatedfor aspe
t ratios w1 and w2, and equivalent aspe
t ratio weq. The 
riti
al value aremapped to State dependent variables (SDV) for ease of post-pro
essing.The Pardoen and Hut
hinson based 
oales
en
e is given by,

Ct =
σPr
max/σy

[1− χ2
i ]

[

α

(
1− χi

χiwi

)2

+ βχ
−1/2
i

] (2.5.16)56



where
χi =







3

2
f

exp(3

2
εpeq

)

wi







1/3

, α = 0.1, β = 1.2 (2.5.17)The Benzerga 
oales
en
e 
riteria is given by
Cb =

σPr
max/σy

[1− χ2
i ]

[

α

(
χ−1
i − 1

w2
i + 0.1χ−1

i + 0.02χ−2
i

)2

+ 1.3χ
−1/2
i

] (2.5.18)Fig.(2.5.10) shows the distribution of 
riti
al values Ct and Cb in axisymmetri


Fig. 2.5.10: Distribution of 
riti
al values of Thomason based void 
oales
en
e 
riteria inuniaxial tensile test (
onsidering aspe
t ratio w1 a) Pardoen and Hut
hinsonbased formulation Ct b) Benzerga 
riteria Cbuniaxial tensile test. It is to be noted that the 
riti
al values obtained from boththe 
riterias are di�erent and the �eld distribution is also di�erent. However, themaximum values are predi
ted at the same lo
ation by both.2.5.2.3 Modi�
ation of Void Nu
leationAs we know, the strain 
ontrolled void nu
leation is given by
ḟn = Aε̇peq, A =

fN

SN

√
2π

exp[−1

2

(
εpeq − εN

SN

)2
] (2.5.19)The nu
leation fun
tion depends on equivalent plasti
 strain and positive stresstriaxiality. Usually the void nu
leation parameters are identi�ed from the uniaxialtensile test simulations where the stress triaxiality is always positive. In 
ase of57



pure 
ompression loading (as in upsetting test), the stress triaxiality is negativeinitially. As the load in
reases, the triaxiality on the outer surfa
e of the spe
imenin
reases purely due to fri
tion in the tool. But, by the time stress triaxiality turnspositive, the equivalent plasti
 strain is high. Due to high equivalent plasti
 strain,the amount of voids nu
leated are less, as the nu
leation fun
tion is towards the endof standard distribution 
urve. The shaded region in Fig.(2.5.11) des
ribes the totalnumber of voids nu
leated. It is 
lear that the number of voids nu
leated are few.

Fig. 2.5.11: Gauss distribution of void nu
leation fun
tion. The �gure shows that thenumber of voids nu
leated are less when the equivalent plasti
 strain is high
To in
rease the number of nu
leated voids, a new parameter 
alled Nu
leationequivalent plasti
 strain εpNeq repla
es the equivalent plasti
 strain in void nu
leationfun
tion. εpNeq starts a

umulating only when stress triaxiality is positive. The in-
rement of εpNeq is zero when stress triaxiality is negative, and is equal to in
rementof equivalent plasti
 strain when stress triaxiality is positive.

εpNeq(n+1)
= εpNeq(n)

+∆εpNeq (2.5.20)where
∆εpNeq =

{

0 when T ≤ 0,

∆εpeq when T > 0
(2.5.21)And the nu
leation fun
tion is given by

ḟn = Aε̇peq, A =
fN

SN

√
2π

exp [−1

2

(
εpNeq − εN

SN

)2
] (2.5.22)58



Fig. 2.5.12: Gauss distribution of void nu
leation fun
tion with respe
t to Nu
leationequivalent plasti
 strain. The �gure shows that the number of voids nu
le-ated are higher in 
omparisonFig.(2.5.12) shows that the number of voids nu
leated with this modi�
ation arehigher. Fig.(2.5.13) depi
ts the improvement in void nu
leation in a standard up-setting test. The new fun
tion predi
ts higher void volume fra
tion at right position.
Fig. 2.5.13: Distribution of nu
leated void volume fra
tion in upsetting test (a) with oldnu
leation fun
tion Eq.2.5.19 (b) New nu
leation fun
tion Eq. 2.5.22
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Chapter 3Parameter identi�
ation andassessment of the material model
3.1 Identi�
ation of Hardening law parametersThe parameters of di�erent hardening laws (implemented in the subroutine) areidenti�ed by �tting the 
urves to experimental �ow 
urve. In this study, Steel20MnCr5-GKZ is 
onsidered as this material is was studied at Fraunhofer IWMas a part of AIF Proje
t - IGF 17678 N. This grade of steel is 
ase hardened andused to manufa
ture gears, pinions, spindle, 
ams, et
. The material is subje
tedto GKZ(Gluehen na
h Kugelformiger Zementit) soft annealing to obtain spheri
al
ementite in the material stru
ture, whi
h makes it easier for ma
hining and in
reasesits resistan
e to wear. The 
hemi
al 
omposition of the material is given in Table3.1.1.The following methodology is used to obtain the experimental �ow 
urve.Steel C Si Mn Cr S Others20MnCr5 0.20 0.25 1.25 1.15 <0.035 (Pb)Table 3.1.1: Chemi
al 
omposition of 20MnCr5 Steel in % [28℄Steel ρ (tonne/mm3) E (MPa) ν σy(MPa)20MnCr5-GKZ 7.8× 10−9 200000 0.31 263.0Table 3.1.2: Me
hani
al properties of 20MnCr5-GKZ Steel1) True stress vs true strain data from uniaxial tensile test are used as a �rstapproximation, until the region when the elongation is uniform (here uniaxialstrain of 0.2).The true stress and strain are 
al
ulated using the formula,

σtrue = σeng(1 + εeng), σeng = F/A0, εeng = ∆l/l0 (3.1.1)60



εptrue = ln(1 + εeng)−
σtrue
E

(3.1.2)

Fig. 3.1.1: First approximation of �ow 
urve data from uniaxial tensile test2) For strains between 0.2 and 1.5, the �ow 
urve is adjusted to the experimentalresults of upsetting test by inverse simulation. In 
ase of upsetting test, thefor
e displa
ement 
urve is used, as it is di�
ult to measure the instantaneous
ross se
tion area of the spe
imen.

Fig. 3.1.2: Flow 
urve obtained from uniaxial tensile test and upsetting test results3) The stress at higher values of strains for the �ow 
urve were obtained by ex-trapolation of the experimental data using a logarithmi
 fun
tion. Here, thelogarithmi
 fun
tion whi
h was obtained by �tting the initial data is given by
σtrue = 105 ln(εptrue) + 760 (3.1.3)The tabulated experimental �ow 
urve obtained using the above pro
edure was usedto simulate tensile test, upsetting test and 
ylinder with not
h test in ABAQUS, andit was observed that the numeri
al for
e displa
ement 
urve were in 
lose agreementto the experimental for
e displa
ement 
urves.The best �t for parameters in equations Eq.2.5.10, Eq.2.5.12 and Eq.2.5.14 wereobtained using least square method. Apart from the three previously mentioned61



hardening laws, the parameters for Ludwi
k law were also determined. Ludwi
k'shardening law is given by,
σy = A

(

1 +
εpeq
A/E

)(1/xN ) (3.1.4)Identi�ed parameters are tabulated below.A xN263.0 6.486Table 3.1.3: Parameters in Ludwi
k hardening lawA ε0 n780.499 0.002 0.209Table 3.1.4: Parameters in Swift hardening lawA B C n263 623.4 2.018 0.666Table 3.1.5: Parameters in Ho
kett and Sherby hardening law
α A B C n AG BG CG nG0.669 0.0 910.0 1.1 0.7163 9436.36 0.0221 0.0917 7708.509Table 3.1.6: Parameters in Ho
kett and Sherby - Ghosh hardening lawFrom Fig.(3.1.3) it is 
lear that the best �t is given by the 
ombination of Ho
kett-Sherby and Ghosh hardening laws. Hen
e, for further simulations Ho
kett-Sherbyand Ghosh hardening law parameters will be used.3.2 Mi
rome
hani
al Parameter Identi�
ationIn 
ase of VAR mi
rome
hani
al model, the mi
rome
hani
al parameters to be iden-ti�ed are1. Initial Void Volume fra
tion - f0The initial void volume fra
tion of the material is obtained by observing thespe
imen under SEM mi
ros
ope at high resolution. It was observed thatthe initial void volume fra
tion of Steel-20MnCr5GKZ, was almost zero. Forfurther simulations, f0 is taken to be 1.5× 10−42. Void nu
leation parameters 62
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Fig. 3.1.3: Comparison of di�erent �ow 
urve approximations with the experimental �ow
urvea) mean equivalent plasti
 strain for nu
leation εNb) standard deviation of distribution SN
) void volume fra
tion of nu
leated voids fNThese parameters are obtained by inverse simulation of uniaxial tensile test.The nominal stress-strain 
urve obtained from simulations are 
ompared to theexperimental nominal stress-strain 
urve to determine the parameters. Sin
e3 parameters are to be obtained from 1 
urve, the system of equations isunderdetermined. Hen
e multiple stationary solutions 
an be obtained i.e.the values of these parameters are not unique.3. Void shape parametersa) Initial aspe
t ratio w10b) Initial aspe
t ratio w20For major part of the study, the voids are assumed to be initially spheri
al.i.e. w10 = w20 = 14. Void prin
ipal axes n(1), n(2) and n(3) along the prin
ipal lengths of the void.i) For 3-dimensional simulations the voids are assumed to be oriented alongthe global Eulerian 
oordinate system.
n(1) = e1, n(2) = e2, and n(3) = e3 (3.2.1)ii) For Axisymmetri
 simulations, the void axes is assumed to be rotated by

270◦ about n(1), su
h that n(3) is oriented parallel to e3. This is done forease of interpretation of the aspe
t ratios.
n(1) = e1, n(2) = e3, and n(3) = −e2 (3.2.2)63



The parameters are identi�ed by 
omparing the simulation results of axisymmet-ri
 uniaxial tensile test to the experimental results. The identi�ed parameter setfor an axisymmetri
 simulation is given in Table 3.2.1 and the stress strain 
urve
omparison is given in Fig.(3.2.1).
f0 εN Sn fN w10 w20

1.5× 10−4 0.5 0.1 0.065 1.0 1.0Table 3.2.1: VAR model Parameters
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Fig. 3.2.1: Comparison of Nominal Stress-Strain 
urve obtained from experiment andVAR model of uniaxial tensile testSin
e the numeri
al results from VAR model are to be 
ompared to results fromGurson model as implemented in ABAQUS, the parameters of Gurson model shouldalso be identi�ed. The parameters to be identi�ed are,1) Initial void volume fra
tion f0As stated in VAR model, the initial void volume fra
tion is take be 1.5−42) Yield fun
tion 
oe�
ients as introdu
ed by Tvergaard and Needleman - q1, q2and q3In literature, various possible values for the 
oe�
ients are mentioned. Themost widely used values are q1 = 1.5, q2 = 1 and q3 = 2.25, and q1 = 1, q2 = 1and q3 = 1. Re
ently, Dunand and Mohr [30℄ proposed the values q1 = 1,
q2 = 0.7 and q3 = 1. The in�uen
e of these values on the material behaviouris shown in Fig.(3.2.2). It is seen that the 
oe�
ients in�uen
e the drop instress 
arrying 
apa
ity of the material, on
e it rea
hes maximum load. Hen
e,mi
rome
hani
ally it in�uen
es the void intera
tions.64



Fig. 3.2.2: Nominal Stress-Strain 
urve, In�uen
e of yield fun
tion 
oe�
ients q1 and q2- GTN Model
Gurson Yield function Φ − Influence of Coefficients
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Fig. 3.2.3: Yield surfa
e in σeq - σm plane, In�uen
e of yield fun
tion 
oe�
ients q1 and
q2 - GTN ModelChange in yield surfa
e, with yield fun
tion 
oe�
ients is shown in Fig.(3.2.3).As seen, the yield surfa
e for the 
oe�
ients proposed by Dunand and Mohr[30℄ deviates from the exa
t solution for pure hydrostati
 stresses, and themodel is mu
h sti�er in 
omparison to the original Gurson model.3) Void nu
leation parameters εN , fN , and SN4) Criti
al void volume fra
tion fc and void volume fra
tion at failure ffSame pro
edure as VAR model is used to identify the parameters. The identi-�ed parameters are give in Table 3.2.2 and the 
orresponding stress strain 
urve inFig.(3.2.4)

f0 q1 q2 εN Sn fN fC fN
1.5× 10−4 1 1 0.5 0.1 0.065 0.023 0.027Table 3.2.2: GTN model parameters65



Fig. 3.2.4: Comparison of Nominal Stress-Strain 
urve obtained from experiment andGurson model of uniaxial tensile test3.3 Assessment of the 
onstitutive model3.3.1 Yield Surfa
eA 
omparison between the yield surfa
e for spheri
al voids (w1 = w2 = 1 )as pre-di
ted by VAR and Gurson model is shown in Fig.(3.3.1). The 
oe�
ients in Gursonmodel are taken to be q1 = q2 = 1, whi
h 
orresponds to the original model pro-posed by Gurson [38℄. The porosity is set at 1%. In forming pro
ess, the stresstriaxility is usually in the range of −1 ≤ T ≤ 1, and in extreme 
ases it mightextended upto 2. The di�eren
e between the two surfa
es is narrow when the stresstriaxiality is 
lose to zero, and as the triaxiality in
reases the yield surfa
e of VARmodel gets broader.
Plot of Yield function Φ
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e in σeq - σm - Comparison between VAR and Gurson model forspheri
al voids with f = 1%In the prin
ipal stress plane for a 2-D 
ase, Fig.(3.3.2) shows a 
omparison be-tween the yield surfa
es obtained from von Mises material model, Gurson modeland Ponte Castaneda (VAR) model. The void volume fra
tion in 
ase of the latter2 models is 
onsidered to be 5%. Due to the presen
e of voids, the yield surfa
e66



shrinks.
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Fig. 3.3.2: Yield Surfa
e in prin
ipal plane 2D 
aseFor pure hydrostati
 
ase, the yield surfa
e of VAR model is sti�er whi
h resultsin lesser void predi
tion. The yield surfa
e of Gurson model is narrow and attainsthe analyti
al spheri
al shell solution [25℄. Re
alling Gurson yield fun
tion
Φ =

(
σeq
σy

)2

+ 2f cosh

(
3σm
2σy

)

− 1− f 2 (3.3.1)Using Taylor expansion for hyperboli
 
osine term, and negle
ting higher orderterms, the yield fun
tion redu
es to
Φ =

1

(1− f)2

(
σeq
σy

)2

+
9

4

f

(1− f)2

(
σm
σy

)2

− 1 (3.3.2)
Plot of Yield function Φ
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Ponte CastanedaFig. 3.3.3: Redu
ed Gurson yield surfa
e a

ording to Eq.3.3.2On plotting the yield surfa
e of the above redu
ed yield fun
tion (Fig.(3.3.3)),it is seen that for pure hydrostati
 
ase, Gurson yield surfa
e 
oin
ides with VARyield surfa
e. Hen
e, the last two terms in original Gurson yield fun
tion 
ontribute67



to obtain the analyti
al solution.
Φ =

(
σeq
σy

)2

+ 2f cosh

(
3σm
2σy

)

− 1− f 2

︸ ︷︷ ︸Term 
ontributing to exa
t solution (3.3.3)With in
rease in void volume fra
tion, the material softens and looses its stress
arrying 
apa
ity. This 
orresponds to shrinking of yield surfa
e in σeq-σm plane.Fig.(3.3.4) depi
ts this behaviour of the yield fun
tion.
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Fig. 3.3.4: E�e
t of f on yield surfa
e3.3.2 Void GrowthIt is known that the evolution of void growth depends on the yield fun
tionΦ throughthe relation Eq.2.1.6. Due to the di�eren
es in yield fun
tion between Gurson andVAR model, the void evolution in both 
ases are totally di�erent. To understandthe behaviour of void evolution, a single 3-dimensional 8 noded hexahedral elementis analysed. The voids are assumed to be spheri
al initially w10 = w20 = 1 with avoid volume fra
tion of f0 = 1%, and the void nu
leation terms are set to zero.
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(b) Uniaxial TensionFig. 3.3.5: Evolution of void volume fra
tion without 
onsidering void nu
leation, in asingle element testFig.(3.3.5a) shows the evolution of void under pure hydrostati
 tension. As ex-pe
ted, it is seen that VAR model is overly sti� whi
h results in underestimation ofvoid growth. This 
an be 
orrelated to wider yield surfa
e of VAR model in pure68



hydrostati
 
ase. The void growth obtained by Gurson model is more realisti
, be-
ause under pure hydrostati
 loading voids grow due to dilatation, i.e. voids growspheri
ally.Fig.(3.3.5b) shows the path tra
ed by void evolution fun
tion under uniaxial ten-sion (T = 1/3). VAR model predi
ts slower void growth in 
omparison to Gursonmodel, whi
h is more physi
al. In 
ase of uniaxial tension, the voids elongate in thedire
tion of the loading and take the shape of a prolate ellipsoid. A sphere whoseradius is equal to the major axis of a prolate void would o

upy more volume in
omparison to a prolate void, whi
h is observed in 
ase of uniaxial tension.

Fig. 3.3.6: Various possible void shapes a) Prolate void w1 = w1 = 5 b) Ellipsoidalvoid w1 = 5 & w2 = 0.2 
) Oblate voids w1 = w1 = 0.2 d)Spheri
al void
w1 = w1 = 1One of the advantages of VAR model is its 
apabilities to a

ount for void shape.To understand the in�uen
e of initial void shape on evolution of void, uniaxial singleelement tensile test for di�erent initial void shapes were studied. Fig.(3.3.7) des
ribesthe in�uen
e of initial void shape on void growth. It is observed that for a triaxialityof T = 1/3, prolate voids are sti�er than other shapes, and oblate voids are softerthan others. The signi�
ant di�eren
e in void growths 
an be 
orrelated to yieldsurfa
e observations of Danas and Aravas [25℄, who observed that, for −0.6 < σm <

1.2 regime, the ellipsoidal voids are sti�er when 
ompared to oblate voids for a VARtype yield fun
tion (MVAR).3.3.3 Void Aspe
t RatiosThe evolution of void aspe
t ratio for di�erent loading 
onditions are determined by
arrying out single element test. Fig.(3.3.8a) shows the evolution of void aspe
t ratioin 
ase of uniaxial tensile loading. The voids are assumed to be initially spheri
aland the element is loaded along n(3) prin
ipal axes of the void. The aspe
t ratios
w1 and w2 in
rease, as the voids elongate in the loading dire
tion i.e. the length ofsemiaxis c in
reases, while the lengths of other two axis a and b redu
e, resulting inin
rease of aspe
t ratio. Uniaxial tension results in prolate voids.69
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Fig. 3.3.7: E�e
t of initial void shape on void growth in uniaxial tensile testSimilarly, in 
ase of uniaxial 
ompression Fig.(3.3.8b), the aspe
t ratios redu
eas the length of semi axis c redu
es and the lengths of semi axis a and b in
rease.In uniaxial 
ompression, voids grow to take oblate form. In physi
al sense, the be-haviour of aspe
t ratios are as expe
ted. This 
an be proved by unit 
ell simulationswith voids under 
onstant triaxiality. But, the unit 
ell simulations are not a partof this study.For biaxial loading, the two loads are applied along n(1) and n(2) prin
ipal axes of
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(b) Uniaxial CompressionFig. 3.3.8: Evolution of void aspe
t ratio under uniaxial loading, as observed in singleelement testthe void. In biaxial tension, voids grow to take oblate form with in
rease in load andunder 
ompression load, the voids grow into prolate ellipsoids. The results of biaxialtension and biaxial 
ompression single element tests are given in Fig.(3.3.9). In 
aseof pure hydrostati
 loading (triaxial load), the voids have to grow spheri
ally, i.e.the aspe
t ratios should remain 
onstant. This is evident in Fig.(3.3.10).70
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(b) Biaxial CompressionFig. 3.3.9: Evolution of void aspe
t ratio under biaxial loading, as observed in singleelement test
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Fig. 3.3.10: Evolution of void aspe
t ratio - Pure hydrostati
 tension, as observed insingle element test3.3.4 Void Nu
leationStrain 
ontrolled void nu
leation fun
tion depends on 3 variables εN , fN and SNas des
ribed in Eq. 2.4.41. Based on observations of Chu and Needleman[23℄, thevariable SN is 
onsidered to be a 
onstant SN = 0.1. An optimum way to under-stand the in�uen
e of εN and fN on material behaviour, is to study the variation ofnominal stress-strain 
urve of a uniaxial tensile test.
fN gives the total volume of nu
leated voids. Fig.(3.3.11a) shows that with in-
rease in fN , the stress 
arrying 
apa
ity of the spe
imen redu
es. This is be
ausewith in
rease in fN , the number of voids nu
leated in
rease, whi
h makes the ma-terial softer. Higher the value of εN , later the voids would nu
leate. As the voidsnu
leate late, the maximum stress shifts to the right in stress-strain 
urve. This
ould be observed in Fig.(3.3.11b). The shift is not quite signi�
ant when fN is less.71
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e of void nu
leation parameters - stress strain 
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3.3.5 Void Coales
en
eRe
alling Thomason based 
oales
en
e 
riteria, we have

Ct =
σPr
max/σy

[1− χ2
i ]

[

α

(
1− χi

χiwi

)2

+ βχ
−1/2
i

] (3.3.4)and Benzerga 
oales
en
e 
riteria
Cb =

σPr
max/σy

[1− χ2
i ]

[

α

(
χ−1
i − 1

w2
i + 0.1χ−1

i + 0.02χ−2
i

)2

+ 1.3χ
−1/2
i

] (3.3.5)It is 
lear that the 
oales
en
e 
riteria depend on equivalent plasti
 strain εpeq, aspe
tratio wi and void volume fra
tion f . To understand the behaviour of 
oales
en
e
riteria, the variation of fun
tions in the denominator of 
riti
al values are evaluated,i.e. R and S in Eq.3.3.6.
R =

1

[1− χ2
i ]

[

α

(
1− χi

χiwi

)2

+ βχ
−1/2
i

] (3.3.6a)
S =

1

[1− χ2
i ]

[

α

(
χ−1
i − 1

w2
i + 0.1χ−1

i + 0.02χ−2
i

)2

+ 1.3χ
−1/2
i

] (3.3.6b)Fig.(3.3.12) shows variation of R and S with equivalent plasti
 strain for spheri-
al void with void volume fra
tion of 1%. It is important to note that, the fun
tions72
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(b)Fig. 3.3.12: Variation ofR and S with equivalent plasti
 strain a) for void volume fra
tion
f = 1% b) for void volume fra
tion f = 1% and f = 5%os
illate at 
ertain plasti
 strain, whi
h would lead to very high 
oales
en
e values.The o

urren
e of the os
illation is in�uen
ed by void volume fra
tion, as shown inFig.(3.3.12b). The greater the void volume fra
tion, the earlier is the os
illation.The variation of R and S with aspe
t ratio is des
ribed in Fig.(3.3.13). It is seenthat the in�uen
e of smaller aspe
t ratios on void 
oales
en
e 
riti
al value is veryhigh in 
omparison to the in�uen
e of larger aspe
t ratios. This analysis has beenseldom 
arried out in literature to prove the observations through experiments. Adetailed study in this regard has to be 
arried out in this 
ontext, whi
h would notbe a part of this study.
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Chapter 4Appli
ation of the 
onstitutive modelIn this se
tion, the results obtained from simulation of bulk forming experimentsusing VAR model is des
ribed. The obtained results are later 
ompared to experi-mental results and other damage models. The �rst three experiments in the followingse
tion were 
arried out at Fraunhofer IWM and the 4th example details were ob-tained from an industrial partner in the framework of AIF proje
t - IGF 17678-NS
hadensvorhersage in der Kaltmassivumformung, and the same results are usedhere.4.1 Uniaxial Tensile TestA round bar of 6 mm diameter is subje
ted to uniaxial tensile load. Fig.(4.1.1) out-lines the dimension of the test spe
imen. An 8 mm extensometer is used to measurethe displa
ement, and the experiment is 
arried out at 
lose to zero strain rate andat room temperature. The mi
ro-stru
ture at the 
enter axis of the spe
imen beforefra
ture is shown in Fig.(4.1.2).

Fig. 4.1.1: Dimension of uniaxial tensile test spe
imenDue to symmetry of the spe
imen about its axis and about its 
enter plane, aquarter of the spe
imen is modelled using axisymmetri
 redu
ed integration elementsas shown in Fig.(4.1.4). The results obtained from 3-dimensional numeri
al model74



Fig. 4.1.2: Mi
rostru
ture of the round bar in the ne
king region

Fig. 4.1.3: Stress strain 
urve of tensile testand axisymmetri
 model were analysed, and it was determined that they were sim-ilar. Hen
e, to save 
omputation power, axisymmetri
 models were used. To avoid
Fig. 4.1.4: Stress Strain 
urve of Tensile testelement lo
alization towards the end of the simulation, a �ne mesh with averageelement size of 0.1 mm is used in the ne
king region. It is observed that the stress-strain 
urve after maximum load is in�uen
ed by mesh size and mass s
aling, hen
eit is important to use the same element size and mass s
aling for all simulations.For numeri
al simulations, the parameters identi�ed in previous 
hapter are used.In 
ase of VAR model, the voids are assumed to be initially spheri
al (w1 = w2 = 1)and the spe
imen is loaded in the dire
tion of n(3). For Gurson model, the 
riti
alvoid volume fra
tion fc and void volume fra
tion at fra
ture ff are not used, toallow the simulation to 
ontinue. Fig.(4.1.5) shows the agreement of stress strain
urve of VAR model and Gurson model to the experimental results. The diameter ofthe spe
imen after ne
king measured from the experiments was 
losely in agreementwith the numeri
al simulations. Fig.(4.1.6) gives the variation of the diameter along75
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Gurson ModelFig. 4.1.5: Stress Strain 
urve as obtained from FE simulationthe loading path. The diameter after fra
ture was measured to be 3.15 mm. In theexperiment, the spe
imen breaks at a strain of 0.61. The diameter of the spe
imen
orresponding to this strain obtained from the numeri
al simulation (Fig.(4.1.6)) isfound to be 3.1 mm.The �eld distribution of equivalent plasti
 strain, von Mises stress and stress
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Fig. 4.1.6: Change in diameter of the spe
imen at the 
enter as obtained from FE sim-ulationtriaxiality is given in Fig.(4.1.7) and the distribution of total void volume fra
tion,void growth and void nu
leation is given in Fig.(4.1.8). Maximum voids nu
leate inthe ne
king region due to high plasti
 strain and positive stress triaxiality.A 
omparison of the 
riti
al damage parameter of various phenomenologi
al damagemodels, Gurson model and VAR model is given in Fig.(4.1.9). It 
an be seen that,all damage models predi
t the lo
ation of damage at the 
enter of the spe
imen, inagreement to the experiment. However, the void volume fra
tion predi
ted by VARmodel is less 
ompared to Gurson model and other models do not give the details76



Fig. 4.1.7: a) Distribution of equivalent plasti
 strain εpeq b) distribution of von Mises orequivalent stress σeq 
) stress triaxiality T , as obtained from FE simulationusing VAR model

Fig. 4.1.8: a) Total void volume fra
tion b) void volume fra
tion due to growth 
) nu
le-ated void volume fra
tion as obtained from FE simulation using VAR modelabout void shape, as opposed to VAR model.A 
omparison of evolution of void volume fra
tion in an element at the 
enterof the spe
imen as obtained from VAR and Gurson model is given in Fig.(4.1.11).The observations are in agreement to the 
on
lusions from the yield surfa
e analysisin previous se
tion. The voids volume fra
tion predi
ted by VAR model is lowerthan Gurson model due to ellipti
al voids. Fig.(4.1.12) gives the in
rease in aspe
tratio at 
enter element and Fig.(4.1.13) shows the distribution of aspe
t ratios in thespe
imen. The voids elongate in the loading dire
tion, and take the prolate shape.As the model is axisymmetri
, the semi axes a and b evolve proportional.Thomason 
oales
en
e 
riteria and Benzerga 
oales
en
e 
riteria are analysed.Fig.(4.1.14) shows the distribution of the 
riti
al values in the spe
imen. Sin
e77



Fig. 4.1.9: a) void volume fra
tion of VAR model b) void volume fra
tion of Gurson model
) Co
kroft Latham damage variable d) Ri
e and Tra
y damage variable e)Ayada damage variable f)Brozzo damage variable
Fig. 4.1.10: Center element used for further analysis

Fig. 4.1.11: Evolution of VVF at the
enter element Fig. 4.1.12: Evolution of aspe
t ratioat the 
enter element
w1 = w2, the 
riti
al values obtained from all three planes w1, w2 and weff are thesame. Fig.(4.1.15) gives the variation of 
oales
en
e 
riteria in the 
enter element.The plot gives the variation of the 
riti
al value obtained from Gurson model as78



Fig. 4.1.13: Distribution a) Aspe
t ratio w1 b) Aspe
t ratio w2 obtained from VARmaterial modelwell. The value obtained from Gurson model are higher as it predi
ts higher voidvolume fra
tion. Also, it 
an be observed that 
oales
en
e parameter C dependson stress triaxiality. It 
an be 
on
luded that there is no one spe
i�
 
riti
al valuewhi
h determines the void 
oales
e for VAR model. In the literature, the 
oales
en
e
onditions are typi
ally quali�ed using unit 
ell simulations and do not 
onsider voidrotation in 3-dimensional 
ase. A need arises for a new 
oales
en
e model, whi
h
onsiders the void rotation and void shape appropriately.

Fig. 4.1.14: Distribution of a) Thomason Coales
en
e Criteria b) Benzerga Colaes
en
e
riteria as obtained from VAR material model79



Fig. 4.1.15: Variation of a) Thomason Coales
en
e Criteria b) Benzerga Colaes
en
e
riteria of the 
enter element4.2 Uniaxial Compression Tests/ Upsetting TestA round bar of 20 mm diameter and 45 mm height is subje
ted to 
ompressionloading in the testing ma
hine. The displa
ement in the spe
imen is 
al
ulated fromthe ma
hine displa
ement. First, the elasti
ity of the ma
hine is determined by
ondu
ting a pseudo test without a spe
imen. The elasti
ity is used to 
al
ulatea 
orre
tor, whi
h is later used to determine the spe
imen displa
ement from thema
hine displa
ement. An opti
al instrument is used to measure the instantaneousmaximum diameter of the spe
imen throughout the experiment. The dimension ofthe spe
imen in outlined in Fig.(4.2.1). Due to symmetry, 1/4th of the spe
imen ismodelled using redu
ed axisymmetri
 elements in ABAQUS.For numeri
al simulations, 4-nodded quadrilateral elements with an average mesh

Fig. 4.2.1: Variation of a) Spe
imen Dimension b) Numeri
al model used for simulation
) The outer element used for further analysissize of 0.1 is used. The pun
h is modelled as a rigid body with surfa
e 
onta
t.80



Fig. 4.2.2: a) Experimental For
e-Displa
ement 
urve b) A minor 
ra
k on the surfa
eof the spe
imen at the end of the experimentSin
e no lubri
ant is used between the 
onta
t surfa
es in the experiment, a 
oe�-
ient of fri
tion of 0.4 is used for the numeri
al simulation. It is to be noted that,the �nal shape of the spe
imen and the For
e-Displa
ement 
urve is in�uen
ed by
oe�
ient of fri
tion. n(3) prin
ipal axis of the void is aligned along y axes of theglobal axisymmetri
 
oordinate system. The spe
imen is loaded along n(3) axis ofthe ellipsoidal void.Fig.(4.2.3) and Fig (4.2.4) shows the 
lose agreement of the experimental results
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Fig. 4.2.3: For
e-Displa
ement
urve obtained from VARand Gurson model 0 10 20 30 40
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Fig. 4.2.4: Path of Maximum diam-eter through the experi-mentto numeri
al results, in
luding the maximum diameter of the spe
imen. Fig.(4.2.5)gives a 
omparison of the 
riti
al values of di�erent damage models. The void vol-ume fra
tion predi
ted by VAR and Gurson model are almost the same due to verylow positive stress triaxiality on the surfa
e, and the voids nu
leate at very highequivalent plasti
 strains.Fig.(4.2.7) gives the distribution of aspe
t ratios in the spe
imen. It shows that thevoids at the top 
enter of the spe
imen remain spheri
al. From Fig.(4.2.6) it is 
learthat the equivalent plasti
 strain and stress triaxiality experien
ed in this region is
lose to zero, due to whi
h the voids do not alter their shape. However, the voidsare ellipti
al towards the 
ir
umferen
e of the spe
imen. The major axes of the voidis along the 
ir
umferen
e, due to whi
h w2 is smaller than w1.Fig.(4.2.9) shows the variation of aspe
t ratio of the outer element with loading.Due to 
ompression, the length of c semi axis of void de
reases, and a and b in-
reases. Initially, a and b in
rease at same magnitude. However, when the spe
imen81



Fig. 4.2.5: a) void volume fra
tion of VAR model b) void volume fra
tion of Gurson model
) Co
kroft Latham damage variable d) Ri
e and Tra
y damage variable e)Ayada damage variable f)Brozzo damage variable

Fig. 4.2.6: Distribution of a) Equivalent plasti
 strain b) von Mises stress 
) Stress tri-axiality as obtained from VAR modelstarts bulging due to fri
tion, they diverge, and voids take the ellipti
al form. Theaspe
t ratios do not evolve when the voids are assumed to be 
ompletely 
losed,whi
h explains the horizontal 
urve in Fig.(4.2.9). Fig.(4.2.8) gives the variation of
f in the outer element. The steep in
rease in VVF signi�es nu
leation of voids.Fig.(4.2.10) and Fig.(4.2.11) show the distribution of 
oales
en
e 
riteria. Sin
ethe aspe
t ratios are di�erent, the distribution of 
riti
al values are also di�erent.The values obtained by Benzerga 
riteria is higher due to the additional quadrati
term in the denominator. In 
omparison to uniaxial tensile test, the 
riti
al valuesobtained here are mu
h smaller. This is due to lesser void volume fra
tion and low82



Fig. 4.2.7: Distribution of a) Aspe
t ratio w1 b) Aspe
t ratio w2 - VAR model

Fig. 4.2.8: Variation of f in the outerelement Fig. 4.2.9: Variation of aspe
t ratioin outer elementtriaxiality.

Fig. 4.2.10: Thomason Coales
en
e Criteria83



Fig. 4.2.11: Benzerga Coales
en
e Criteria4.3 Cylinder with Not
hA round bar of 18 mm diameter and 27 mm height, with a not
h as shown inFig.(4.3.1), is subje
ted to 
ompression loading. This experiment is advantageousas the region where damage o

urs is known, the damage o

urs in the not
hedregion. This allows for tra
king the �rst visible 
ra
k. A high resolution, highspeed 
amera is used to 
apture the 
ra
k initiation. Due to symmetry, 1/4th ofthe spe
imen is modelled. 3 dimensional elements are used, as the spe
imen is notaxisymmetri
.For numeri
al simulations, 8-nodded hexahedron elements with an average meshsize of 0.1 is used. The pun
h is modelled as a rigid body with surfa
e 
onta
t. Sin
eno lubri
ant is used between the 
onta
t surfa
es in the experiment, a 
oe�
ient offri
tion of 0.4 is used for the numeri
al simulation. It is to be noted that, the �nalshape of the spe
imen and the For
e-Displa
ement 
urve is in�uen
ed by 
oe�
ientof fri
tion. The void prin
ipal axes are aligned along the global Euler axes i.e. n(1),
n(2) and n(3) along x, y and z. The dire
tion of loading is along n(3) i.e z axis ofthe global 
oordinate system.Fig.(4.3.2) des
ribes the for
e displa
ement 
urve. The �rst visible 
ra
k wasspotted at a displa
ement of 16.5 mm.Fig.(4.3.3) shows the 
lose agreement of the experimental results to numeri
alresults. Fig.(4.3.4) gives a 
omparison of the 
riti
al values of di�erent damagemodels.Fig.(4.3.6) outlines the distribution of aspe
t ratios in the spe
imen. Similarto upsetting test, the voids at the top 
enter of the spe
imen are more spheri
al.However, the voids are ellipti
al in the not
h region. The major axis of the void arealong the 
ir
umferen
e of, due to whi
h the aspe
t ratio w1 is smaller. This impliesthat the void on the surfa
e 
oales
e �rst, and the 
ra
k grows inwards with loading.Fig.(4.3.8) shows the variation of aspe
t ratio of the outer element with loading. w2de
reases initially and as the stress triaxiality in
reases, w2 also in
reases. Fig.(4.3.9)84



Fig. 4.3.1: Variation of a) Spe
imen Dimension [12℄ b) Numeri
al model used for simu-lation 
) The outer element used for further analysis

Fig. 4.3.2: Experimental For
e-Displa
ement 
urve with images from the not
h region
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Fig. 4.3.3: For
e-Displa
ement 
urve obtained from VAR and Gurson modeland Fig.(4.3.10) show the distribution of 
oales
en
e 
riteria 
riti
al 
ondition. Sin
ethe aspe
t ratios are di�erent, the distribution of 
riti
al values are also di�erent.
85



Fig. 4.3.4: a) void volume fra
tion of VAR model b) void volume fra
tion of Gurson model
) Co
kroft Latham damage variable d) Ri
e and Tra
y damage variable e)Ayada damage variable f)Brozzo damage variable

Fig. 4.3.5: Distribution of a) Equivalent plasti
 strain b) von Mises stress 
) Stress tri-axiality as obtained from VAR model

Fig. 4.3.6: Distribution of a) Aspe
t ratio w1 b) Aspe
t ratio w2 - VAR model86



Fig. 4.3.7: Variation of f in the outerelement Fig. 4.3.8: Variation of aspe
t ratioin outer element

Fig. 4.3.9: Thomason Coales
en
e Criteria
87



Fig. 4.3.10: Benzerga Coales
en
e Criteria

88



4.4 Industrial ExampleThe VAR model is used to simulate an a
tual 
old bulk forming pro
ess to manufa
-ture a shaft with �ange as shown in Fig.(4.4.1). The manufa
turing pro
ess 
onsistsof 4 steps. During the manufa
turing pro
ess, it was observed that 
ertain partshad developed 
ra
ks on the �ange surfa
e. Here, we observe if the damage modelspredi
t damage at the right lo
ation.Sin
e the part is axisymmetri
, a 4 noded, quadrilateral redu
ed integration ax-isymmetri
 element is used for simulation. A 
onta
t pressure dependent fri
tionmodel (Table 4.4.1 ) is used for the metal-die interfa
e. The tools are modelledas rigid bodies and a penalty 
onta
t fri
tion model is used for interfa
e. Velo
ityboundary 
onditions are applied on the referen
e point of ea
h tool. The varioussteps in numeri
al simulation is shown in Fig.(4.4.1).Sin
e the 
oales
en
e model is premature for VAR model, void volume fra
tion fCoe�
ient of Fri
tion(µ) Conta
t pressure0.12 00.12 5000.1 5500.08 6000.06 6500.04 7000.02 7500 800Table 4.4.1: Pressure dependent 
oe�
ient of fri
tion

Fig. 4.4.1: The steps in manufa
turing pro
ess89



is taken as damage parameter for analyses. Fig.(4.4.2) des
ribes the predi
tion ofdamage variables of various damage models. It 
an be seen that most damage mod-els predi
t the lo
ation of higher damage in the upper portion of the shaft, wheretypi
ally 
hevron 
ra
ks 
an form. But, this was not observed during the manu-fa
turing pro
ess. VAR model predi
ts maximum damage on the 
ir
umferentialsurfa
e of the �ange, in line to manufa
turing observations.Sin
e the top portion of shaft is 
ru
ial, the void volume fra
tion at the end of

Fig. 4.4.2: a) void volume fra
tion of VAR model b) void volume fra
tion of Gurson model
) Co
kroft Latham damage variable d) Ri
e and Tra
y damage variable e)Ayada damage variable f)Brozzo damage variableevery step as obtained from VAR model is shown in Fig.(4.4.3). The void volumefra
tion starts in
reasing from Step-2 in the manufa
turing pro
ess. But, the voidson the 
ir
umferential region nu
leate in the last step.The distribution of equivalent plasti
 strain and stress triaxiality is show inFig.(4.4.4). It is evident that the stress triaxiality is higher in the �ange region,whi
h would fa
ilitate void nu
leation and hen
e in
rease damage.
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Fig. 4.4.3: Void Volume Fra
tion at the end ea
h step as obtained from VAR model

Fig. 4.4.4: a) Equivalent plasti
 strain b) Stress triaxiality
91



Chapter 5Con
lusion and future work
5.1 Con
lusionThe primary fo
us of this thesis work was to simulate du
tile damage in forming pro-
esses using mi
rome
hani
ally motivate VAR model proposed by Ponte Castañedaet. al. [42℄. The �rst part of the work dealt with validation of VUMAT subroutinefor forming simulations of materials with very low initial porosity.Element 
losure phenomenon and non 
onvergen
e of 
utting plane algorithmwere en
ountered when the subroutine was used for large plasti
 deformation simu-lations. The element 
losure phenomenon was linked to the 
al
ulation of Eshelbytensors. As dis
ussed in Se
tion 2.9.1, the element 
losure phenomenon 
ould be re-solved by limiting the evolution of voids on
e f = 1× 10−4 and the evolution aspe
tratios outside the bounds 10−2 < w < 102. The latter issue of divergen
e of 
uttingplane algorithm was due to indeterminate numeri
al solutions. When any of the as-pe
t ratios are equal to ea
h other or equal to 1, the plasti
 spin tensor W p be
omesindeterminate. As proposed by Aravas [4℄, the spin tensor W p is set to zero whenthe di�eren
e between any two aspe
t ratios is less than 10−2. Also, the when thevoids are spheri
al, the derived yield fun
tion in Se
tion 2.8.2 is hard 
oded. These
hanges 
olle
tively 
ould resolve the divergen
e of 
utting plane algorithm. Therevised subroutine was used to simulate a plane strain extrusion example des
ribedin Kailasam and Ponte Castañeda [42℄, and the obtained results were in agreementwith the literature results. This assures that the modi�
ation does not alter theVAR 
onstitutive equation.The revised subroutine was further extended. Various isotropi
 hardening laws,namely - Swift Law, Ho
kett-Sherby hardening law, and a 
ombination of Ho
kett-Sherby and Ghosh hardening law were 
oupled to the 
onstitutive equation. Thoma-son 
oales
en
e 
riteria and Benzerga 
oales
en
e 
riteria were also implemented.The idea was to test the existing 
oales
en
e 
riteria for VAR model, as it hasbeen seldom attended to in the literature. Also, to predi
t better void nu
leationin negative triaxiality appli
ations (upsetting test), the equivalent plasti
 strain invoid nu
leation fun
tion was repla
ed by a new nu
leation plasti
 strain whi
h a
-
umulates only when triaxiality is positive. This modi�
ation improved the void92



nu
leation and the e�
ien
y of the model in negative stress triaxiality regime.The se
ond part of the thesis work was to use the VAR model to simulate bulkforming experiments (uniaxial tensile test, upsetting test and 
ylinder with not
h up-setting test) and an industrial example to understand the material model behaviourand its advantages over other damage models. Steel 20MnCr5-GKZ material wasextensively studied at Fraunhofer IWM and hen
e this material was used for anal-ysis. The �ow 
urve of this material was obtained from Uniaxial tensile test uptoa strain of 0.2 and upsetting test for strains 0.2-1.5. It was determined that the
ombination of Ho
kett-Sherby and Ghosh hardening law provided the best �t tothe experimentally obtained �ow 
urve.Certain parameters of VAR model were taken from literature, and the void nu-
leation parameters were obtained by �tting the numeri
al stress-strain 
urve toexperimental stress-strain 
urve of uniaxial tensile test of a round bar. For allsimulations, the voids were initially assumed to be spheri
al, and n(3) axis of theequivalent ellipsoidal void was assumed to be aligned to the dire
tion of maximumload. Also, the parameters of Gurson model were identi�ed using similar pro
edure.The yield surfa
es of VAR model and Gurson model in σm− σeq plane was stud-ied. In 
ase of VAR model, the yield surfa
e were wider for pure hydrostati
 
asesand seemed to deviate from the analyti
al spheri
al shell solution as opposed to Gur-son model. Also, it was determined that the hyperboli
 
osine term in Gurson yieldfun
tion 
ontributes to the exa
t solution at high stress triaxialities. The in�uen
eof initial void volume fra
tion on the yield surfa
e was also studied. As expe
tedthe yield surfa
e shrinks for higher void volume fra
tion, whi
h signi�es the loss ofstress 
arrying 
apa
ity of the material.The evolution of void volume fra
tion in 
ase of uniaxial tensile load (T = 1/3)and hydrostati
 tensile load (T = ∞) was understood from single element simula-tions. The void growth in Gurson model was larger in 
omparison to VAR model.In 
ase of uniaxial tensile load, the results obtained from VAR model are more re-alisti
. However, at high stress triaxiality the VAR model was mu
h sti�er. Also,the in�uen
e of initial void shape on void growth was studied for a stress triaxialityof T = 1/3. In this stress triaxiality region, oblate voids grow mu
h larger thanother void shapes. The evolution of void shape i.e. the aspe
t ratios w1 and w2,at di�erent triaxiality was studied and the obtained results were found to be intu-itively realisti
. Under uniaxial tensile load and biaxial 
ompression load, initiallyspheri
al voids grow to take the prolate shape, and under uniaxial 
ompression andbiaxial tension, the voids took oblate shape. In pure hydrostati
 
ase, the voidsgrow spheri
ally i.e. the aspe
t ratios remain 
onstant and equal to one. Also, thein�uen
e of void nu
leation parameters on stress-strain 
urve and the behaviour of
oales
en
e 
riteria with equivalent plasti
 strain and void aspe
t ratios were s
ruti-nized in Chapter 3. Nu
leation parameter fN in�uen
ed the drop of the stress-strain
urve after maximum load, and εN shifted the maximum stress lo
ation to left.93



In Chapter 4, the results obtained from VAR model were 
ompared to other dam-age models for pra
ti
al experiments and manufa
turing example. The numeri
alresults obtained were in agreement with the experimental results. The shape of thedeformed body, the von Mises stress pro�le, equivalent plasti
 strain pro�le, stresstriaxiality pro�le and the distribution of void volume fra
tion demonstrate the 
or-re
tness of the simulations and its appli
ability. It was also shown that, apart fromvoid volume fra
tion, VAR model gives more details about the shape of the voids. Inuniaxial tensile test damage is predi
ted at 
enter of the spe
imen, in upsetting testat the surfa
e in the 
enter and in not
hed 
ylinder test at the 
enter of not
h. Thedamage lo
ation obtained from Gurson model and other phenomenologi
al damagemodels agreed 
losely to VAR model and to experimental observations. It is to benoted that for these simple experiments, all damage models provide good results.However, in the simulation of Shaft with �ange, VAR model predi
ted the damagelo
ation to be on the surfa
e of the �ange and other models predi
ted along the axisof the shaft. VAR model agreed 
losely to the experimental results. However, it willbe premature to 
on
lude that VAR model is most a

urate with just one example.The VAR model provides more details about the evolution of voids, its orienta-tion and shape whi
h is an important information to determine the anisotropy ofthe material after forming. However, due to high 
omputation 
ost, the 
omplex-ity of the 
onstitutive equation and deviation of VAR model results at high stresstriaxiality, raises questions about its appli
ability. Also, unavailability of a tested
oales
en
e 
riterion whi
h 
onsiders void rotation for 3-dimensional appli
ationsis a drawba
k. The VAR model also requires identi�
ation of more mir
ostru
tureparameters, in 
omparison to Gurson model. These parameters are di�
ult to iden-tify using experiments. Based on VAR model, various other models [ MVAR model(Danas and Aravas [25℄), GVAR model (Cao et. al [14℄) , Se
ond order homoge-nization model (Ponte Castañeda et. al.)℄ are proposed in the literature whi
h givesbetter results for pure hydrostati
 loading 
onditions.5.2 Future Work1. The 
omputation 
ost of VUMAT subroutine 
an be improved by using ex-pli
it equations proposed by Aravas and Ponte Castañeda [4℄ for 
al
ulationof Eshelby tensors.2. The VAR model 
an be modi�ed to a

ount for 
hanges proposed by Danasand Aravas [25℄ to improve its a

ura
y at high stress triaxiality.3. A need arises to study the 
oales
en
e 
riteria, and develop a new 
riterionwhi
h 
onsiders void shapes and void rotation appropriately.
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Appendix ACutting Plane Algorithm [55℄Numeri
al solution of a rate independent elasto-plasti
 
onstitutive relation is basedon an iterative solution of dis
retized form of balan
e of momentum equations. In the
ontext of �nite element analysis, 
onsideration at two di�erent levels are required- the global level and the material level. Typi
ally the following steps are involvedin the 
omputation [59℄,1) The dis
retized momentum equations generate in
remental motion , whi
h areused to 
al
ulate the in
remental strain history using kinemati
 relations. Thisstep o

urs at the global level.2) For the 
omputed in
remental strain history, new values for the in
rementalstress ve
tor ∆σ is obtained by integrating 
onstitutive equation at ea
h ma-terial point. The 
onsisten
y 
ondition (plasti
ity relations) are to be satis�edat the material level.3) With the 
omputed stresses, a 
he
k for violation of equilibrium 
ondition is
arried out. If violated, the iteration pro
ess 
ontinues by returning to step 1.Step 2 is regarded as the 
entral problem of 
omputational plasti
ity and is a straindriven pro
ess, i.e., the state variables are 
omputed for a given deformation history.Exa
t integration of the 
onstitutive equations is possible in some 
ases of perfe
tplasti
ity, however most plasti
ity models require a numeri
al method [3℄. The ear-lier numeri
al methods employed to 
al
ulate the in
remental stress 
aused the �nalstress to gradually drift away from the yield surfa
e, whi
h ne
essitated a methodto bring ba
k the stresses to yield surfa
e.A powerful 
lass of algorithms whi
h a

omplish this are the return mapping al-gorithms, also known as elasti
 predi
tor-plasti
 
orre
tor algorithms. Pioneeringwork in this regard was published by Wilkins [67℄ who proposed the radial returnalgorithm for J2 plasti
ity. Most of the algorithms in return mapping 
lass are par-ti
ular 
ases of the trapezoidal and midpoint rules, whi
h are generalized to satisfythe plasti
 
onsisten
y 
ondition [54℄.Ortiz and Simo [55℄ pointed out that the s
opeof proposed methodologies by large are restri
ted to simple plasti
ity models and to
onstant isotropi
 elasti
 moduli. And, it also involves evaluation of the gradientsof plasti
 �ow dire
tion, the normal to the yield surfa
e, the plasti
 moduli and theelasti
ity tensor. The evaluation of these gradients are 
omputationally expensive96



and are best avoided.Ortiz and Simo proposed an algorithm, known as 
utting plane algorithm (CPA),within the framework of the operator splitting methodology, where the 
onstitutveevolution equation are split into two parts - elasti
 and plasti
. CPA is appli
ableto a general 
lass of plasti
 and vis
oplasti
 
onstitutive models exhibiting non-asso
iative plasti
 �ow, arbitrary yield 
riteria and hardening laws, and does notrequire the evaluation of gradients. The drawba
k of CPA is the di�
ulty in 
om-puting the 
onsistent tangent operator. When the derivation of the gradients are
ompli
ated, CPA is a good 
hoi
e. Also, when su�
iently small time steps areused, the a

ura
y and 
onvergen
e of CPA are 
laimed to be higher.The elasti
 part of the 
onstitutive equation is �rst integrated to obtain theelasti
 predi
tor, whi
h is taken as initial 
ondition for the plasti
 equations. Thestress traje
tories during the return mapping phase should follow the steepest de-s
ent path 
orresponding to the yield fun
tion. In CPA, the relaxation pro
ess forstresses and plasti
 variables are 
arried out in a step-by-step fashion by linearizingthe yield fun
tion around the 
urrent values of the state variables. The linearizedyield fun
tion de�nes a straight interse
tion or a 
ut with the plane Φ = 0 ontowhi
h the stress and plasti
 variables are proje
ted to de�ne the next iteration -hen
e the name 'Cutting Plane'.Sin
e the 
onstitutive model dis
ussed in this study assumes asso
iative �ow rulewith isotropi
 hardening, here a generi
 outline of the CPA for rate independent,asso
iative elastoplasti
 material is des
ribed. The material 
an be 
hara
terized bythe following set of 
onstitutive equations,
ε = εe + εp (A.0.1)
σ = σ(εe,q) (A.0.2)

ε̇p = Λ̇N(σ,q) = Λ̇
∂Φ

∂σ
(A.0.3)

q̇ = Λ̇g(σ,q) (A.0.4)
ε, εe and εp represent the total, elasti
 and plasti
 strain tensors, σ the Cau
hystress tensor, q is a set of plasti
 variable and q̇ is the evolution equation of plasti
variables. Also, N is plasti
 �ow dire
tion and Λ̇ is the plasti
 multiplier whi
h isdetermined for the Kuhn-Tu
ker 
ondition,

Φ(σ, q) ≤ 0 , Λ̇ ≥ 0 , ΦΛ̇ = 0 (A.0.5)Rephrasing Eq.(A.0.1) and Eq. (A.0.2) in rate form,
ε̇ = ε̇e + ε̇p (A.0.6)

σ̇ = C(ε̇− ε̇p) (A.0.7)97



The 
onstitutive equation 
an now be additively de
omposed in to elasti
 and plasti
part. The elasti
 part is deformation driven and is given by,
ε̇ = ˙̂ε (A.0.8a)

σ̇ = C : ε̇ (A.0.8b)
ε̇p = 0 (A.0.8
)
q̇ = 0 (A.0.8d)And the plasti
 set of equations,
ε̇ = 0 (A.0.9a)

σ̇ = −C : ε̇p (A.0.9b)
ε̇p = Λ̇N (A.0.9
)
q̇ = Λ̇g (A.0.9d)Substituting Eq. (A.0.9
) in Eq. (A.0.9b), one obtains,

σ̇ = −Λ̇C : N (A.0.10)Diving Eq. (A.0.10) and Eq. (A.0.9d) by Λ̇,
dσ

dΛ
= −C : N (A.0.11a)
dq

dΛ
= g (A.0.11b)Eq. (A.0.11) de�nes a set of rate-independent relaxation equation whi
h dire
ts the

Fig. A.0.1: Geometri
 interpretation of 
utting plane algorithm [55℄stress traje
tories to follow the steepest des
ent paths 
orresponding to the yield98



surfa
e. Figure (A.0.1) shows the geometri
 interpretation of the 
utting plane al-gorithm. In elasti
 equations (Eq. A.0.8), the inelasti
 response of the material isfrozen, i.e., the plasti
 strains and the internal variables are taken to remain un-
hanged and all the pres
ribed deformation rate ˙̂ε is assumed to strain the materialelasti
ally. In this s
enario the elasti
 equations are dire
tly integrable and thestresses are simply given by the elasti
 relation, while plasti
 strains and internalvariables remain identi
ally equal to their respe
tive initial values. The yield fun
tion
Φ is linearized around the 
urrent values of the state variables σ(i)

n+1, q(i)
n+1, to obtain,

Φ
(i+1)
n+1 ≈ Φ

(i)
n+1 +

∂Φ
(i)
n+1

∂σ
(i)
n+1

: (σ
(i+1)
n+1 − σ

(i)
n+1) +

∂Φ
(i)
n+1

∂q
(i)
n+1

.(q
(i+1)
n+1 − q

(i)
n+1) (A.0.12)The dis
retized form of relaxation equations Eq. (A.0.11) in terms of in
rementalplasti
 multiplier ∆Λ is given as follows:

σ
(i+1)
n+1 − σ

(i)
n+1 = −∆Λ(C

(i)
n+1 : N

(i)
n+1) (A.0.13a)

q
(i+1)
n+1 − q

(i)
n+1 = ∆Λg

(i)
n+1 (A.0.13b)Substituting Eq. (A.0.13) in Eq. (A.0.12) and equating Φ

(i+1)
n+1 to 0, gives the plasti
in
rement multiplier ∆Λ as,

∆Λ =
Φ

(i)
n+1

N
(i)
n+1 : C

(i)
n+1 : N

(i)
n+1 −

∂Φ
(i)
n+1

∂q
(i)
n+1

.g
(i)
n+1

(A.0.14)The iteration 
ontinues until the plasti
 
onsisten
y is restored within a pres
ribedtoleran
e.
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Algorithm 1 Cutting Plane Algorithm [55℄1: Geometri
 Update:
εn+1 = εn +∇su2: Elasti
 Predi
tor:

ε
p(0)
n+1 = εpn

ε
e(0)
n+1 = εn+1 − ε

p(0)
n+1

q
(0)
n+1 = qn

σ
(0)
n+1 = σ(ε

e(0)
n+1, q

(0)
n+1)3: Che
k for yielding: if Φ

(0)
n+1 ≤ 0then ε

p
n+1 = ε

p(0)
n+1; ε

e
n+1 = ε

e(0)
n+1;σn+1 = σ0

n+1; qn+1 = q
(0)
n+1; exitelse i = 04: Plasti
 
orre
tors:

∆Λ =
Φ

(i)
n+1

N
(i)
n+1 : C

(i)
n+1 : N

(i)
n+1 −

∂Φ
(i)
n+1

∂q
(i)
n+1

.g
(i)
n+1

σ
(i+1)
n+1 = σ

(i)
n+1 −∆Λ(C

(i)
n+1 : N

(i)
n+1)

q
(i+1)
n+1 = q

(i)
n+1 +∆Λg

(i)
n+15: Convergen
e 
he
k: if |Φ(i+1)

n+1 | ≤ TOL|Φ(0)
n+1|then σn+1 = σi+1

n+1; qn+1 = q
(i+1)
n+1 ; εen+1 = εe(σn+1, qn+1); ε

p
n+1 = εn+1−εen+1;else i = i+ 1; Go To step (4)
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