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Abstract

As applied cointegration analysis faces the challenge that (a) potentially relevant

variables are unobservable and (b) it is uncertain which covariates are relevant, partial

systems are often used and potential (stationary) covariates are ignored. Recently it has

been argued that a nominally significant cointegration outcome using the bootstrapped

rank test (Cavaliere, Rahbek, and Taylor, 2012) in a bivariate setting might be due

to test size distortions when a larger data-generating process (DGP) with covariates is

assumed. This study reviews the issue systematically and generally finds noticeable but

only mild size distortions, even when the specified DGP includes a large borderline-

stationary root. The previously found drastic test size problems in an application of a

long-run Phillips curve (inflation and unemployment in the euro area) appear to hinge

on the particular construction of a time series for the output gap as a covariate. We

conclude that the problems of the bootstrapped rank test are not severe and that it is

still to be recommended for applied research.

JEL codes: C32 (multiple time series), C15 (statistical simulation methods), E31 (in-

flation)

Keywords: bootstrap, cointegration rank test, empirical size

1 Introduction

The cointegration rank test conducted in a multivariate system (“Johansen procedure”) is a

widespread and popular tool for applied time series analysis. It has long been known that
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asymptotic inference with that test suffers from substantial size distortions in small samples

typical of macroeconomic datasets. Johansen himself developed a finite-sample Bartlett

correction for the trace test statistic (Johansen, 2002), and later on bootstrap techniques

were proposed (Cavaliere, Rahbek, and Taylor, 2012, 2015). This could be considered as

the state of the art.

Recently, however, by conducting an extensive array of simulations Benati (2015) ar-

rived at the interesting result that even the bootstrapped version of the rank test could still

be subject to considerable size distortions.1 In one of the many simulations in his paper

he essentially analyzed the performance of the bootstrapped rank test in a partial system,

i.e. in a situation where the VAR used for the test is lower-dimensional than the DGP, even

when only stationary covariates are omitted, not variables in the cointegration relationships

themselves. Let inflation be denoted as πt and unemployment as ut , while the short- and

long-term interest rates st and lt are transformed a priori to the stationary term spread (l−s)t

together with the differenced short rate ∆st and the output gap yt : Then the analysis concerns

x2,t = (πt ,ut)
′ with N = 2 versus x5,t = (πt ,ut , lt − st ,∆st ,yt)

′ with N = 5. For the bivariate

system he reports in his Table 2 a p-value of 0.049 for the bootstrapped test of a cointegrat-

ing rank r = 0 versus r = 1. This finding would usually suggest to reject non-cointegration

of euro-area inflation and unemployment at the 5% level of significance. By simulation un-

der the null hypothesis he then found a considerable size distortion of the bootstrapped test

based on x2,t when the DGP was assumed to contain x5,t and dismissed the nominal findings

of cointegration as a “statistical fluke”.

Because the reliability of the cointegration test is crucial for many applied research ar-

eas, simulations using the actual data are also supplemented here with some simulations

of artificial data.2 Our main finding is that generally the bootstrapped rank test does not

1Benati’s paper was not meant as an econometrics methods study but investigated the existence of long-run
Phillips curve relationships in various economies (synthetical euro area, UK, USA, Canada, and Australia). In
this context the term “long-run Phillips curve” refers to a connection between π , the growth rate of the price
level (not wage inflation), and u, the level of the unemployment rate; see section 4.2 for plots of the euro area
data. We focus here on the results for the euro area and follow the choice of Benati’s synthetical sample that
actually predates the introduction of the euro (quarterly data 1970-1998).

2The original application also considered cointegration ranks r > 1 including interest rate levels, and checked
CPI inflation as a variant. The datasets are not strictly identical, but we obtain qualitatively the same re-
sults, see the appendix (A). For the bootstrap procedures we use the johansensmall.gfn function package
(version ≥2.6) by Sven Schreiber and Andreas Noack Jensen for the open-source gretl program and freely
available online from within gretl. Similar code for Matlab is for example available on De Angelis’ homepage
https://sites.google.com/view/luca-de-angelis/research.
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over-reject to any alarming extent. This is true for example in simulations of the full 5-

dimensional system with x5,t when the output gap yt is measured as a a standard HP-filter

cycle of real output. In the literature the bootstrapped rank test was found to have some-

what inflated test sizes when there is a large (stationary) root in the null model (Cavaliere,

Rahbek, and Taylor, 2015), but this effect appears to be limited in the given partial system

setting. We can qualitatively replicate the over-rejection of Benati (2015) only with a par-

ticular output gap measure that was formerly distributed with the ECB’s area-wide model

dataset (AWM), some properties of which we will discuss below. Hence overall we con-

clude that the problems of the bootstrapped rank test are not severe and that it is still to be

recommended for applied research.

2 Theoretical considerations

Before turning to the simulations and replications, we briefly revisit the relevant theoretical

background for cointegration in potentially partial systems.

First of all, note that the meaning of a “partial” system is different from the one used

in Harbo, Johansen, Nielsen, and Rahbek (1998) and related works. There the considered

systems are specified conditional on contemporaneous values of some of the I(1) variables

that are part of the cointegrating relations. In contrast, we use the term “partial” to refer to

a model that completely disregards some stationary variables of the underlying full system.

If the full system vector xN,t is N-dimensional and suitably ordered, we define a partial

system as modelling the subvector xM,t = FxN,t , where F = [IM : 0], M < N. Sometimes

the process representing xM,t is called a subprocess or marginal process; this subprocess is

assumed to contain all I(1) components of xN,t , such that for the remainder process it holds

that [0 : IN−M]xN,t ∼ I(0).

The standard starting point that we will adopt is that the data of the full system xN,t are

generated by a finite-order VAR. It is well known that in general the subprocess xM,t will

then not possess a finite-order VAR representation but instead some VARMA form, which

in turn entails an infinite-order VAR model. Before addressing any bootstrap techniques, an

important question thus concerns the cointegration analysis of inifite-order VARs.

In this context, one important insight which can be attributed to Saikkonen and Luukko-
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nen (1997) and Lütkepohl and Saikkonen (1999) is that the application of the standard Jo-

hansen rank test in VAR(∞) systems is asymptotically valid. Of course, for the asymptotics

to work the chosen lag order must not grow too fast relative to the sample size, but this

restriction is either irrelevant for practical applications in given samples or is easy to imple-

ment in an automated fashion.

Therefore, given that (1) the partial system xM,t has a VAR(∞) representation, that (2)

the cointegration rank test using a finite lag order is asymptotically still justified, and that

(3) the mentioned bootstrap approaches to the rank test are also known to be asymptotically

justified, by implication the bootstrapped rank test could in principle be expected to be valid

for partial systems, too.

However, approximating a VAR(∞) with a VAR(p) obviously leaves some autocorrela-

tion in the residuals “by construction”. This is not the situation for which the iid-residual

bootstrap is designed and hence it is not obvious whether it continues to be valid. In such

a situation, the residual-based block bootstrap might be promising; see Jentsch, Politis, and

Paparoditis (2015), who deal with the VECM coefficients for a given cointegration rank,

however. Also, as mentioned by Kilian and Lütkepohl (2017, p.348), “no formal results

... about the validity of conducting inference about structural impulse responses in cointe-

grated VAR models based on the residual-based block bootstrap” exist. While our topic here

is not structural impulse responses, a similar gap seems to apply to rank testing, especially

in the VAR(∞) context of a partial system.

Until the statistical theory is completely settled, we must turn primarily to simulation

studies. Also, it appears essential to obtain a good approximation to the VAR(∞) in the first

place, such that the difference becomes negligible. Intuitively, if the residuals of a VAR(p)

fitted to the partial system are close to being white noise, then there is hope that a standard

iid-residual bootstrap will work as usual. Building on this insight, we will therefore choose

the VAR lag order for the partial systems endogenously based on diagnostic autocorrelation

testing as part of the simulation algorithm.

4



3 Bootstrap test specifications

Throughout this note we focus on the popular case of an unrestricted constant, which was

formally justified in Cavaliere, Rahbek, and Taylor (2015). For lag length selection in the

test VARs we deliberately choose not to use information criteria. The reason is that the non-

autocorrelation of residuals is essential for the validity of the standard iid-residual based

bootstrap, and some of the lag order suggestions by information criteria led to substantial

remaining residual autocorrelation. Thus we specify lag orders based on passing a diagnos-

tic autocorrelation test instead.

We focus on the case where the permanent effects on inflation of many shocks are

unrestricted (allowed but not forced to be permanent) because it leaves the reduced-form

coefficients of the VAR unchanged, allowing the standard application of the Johansen rank

test.

The original simulation study used a five-dimensional DGP including inflation and un-

employment that imposed absence of cointegration, and then applied the bootstrapped rank

test of the null hypothesis r = 0 vs. r ≥ 1 to the bivariate sub-system of simulated inflation

and unemployment (in levels) in each simulation draw. Table 3 in Benati (2015) shows that

the bootstrap procedure rejected the null hypothesis of no cointegration at a nominal 5%

significance in 18.3% of the simulation draws. Thus he concluded that the bootstrap test

grossly exceeded its nominal significance level, and that therefore the original test rejection

with a p-value of just under 5% might be “a fluke”.

The original study’s suggested simulation design is absolutely reasonable. However,

this test approach is not the only possible one, at least two different test variants come

to mind when further variables are suspected to be relevant for the system dynamics. To

systematically address these issues, we enumerate the following three possibilities of coin-

tegration testing with stationary co-variates in small samples:

1. (Bivariate, Benati’s method) The null model is given by an unrestricted autoregres-

sion for the vector x′0,t = (∆ut ,∆πt ,yt ,∆st , lt − st), where yt is the output gap, and

lt − st is the term spread between longer-term and short-term interest rates. To en-

sure a common lag length in levels, the K−th lag coefficients for the differences of
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unemployment and inflation are set to zero for the simulation DGP:

x0,t = c+
K−1

∑
i=1

Aix0,t−i +(05,2|ÃK)x0,t−K + εt ,

where ÃK is an unrestricted 5× 3 matrix for the K-th coefficients of the three sta-

tionary co-variates. Use this model to generate pseudo data, then run the Cavaliere,

Rahbek, and Taylor (2015) bootstrapped cointegration test with an unrestricted con-

stant on each simulated draw of the bivariate data x∗
′

2,t = (u∗t ,π
∗
t ) with a lag order

K.3

2. (Swensen, unmodelled covariates method) Another bootstrap possibility in the pres-

ence of stationary covariates is given by Swensen (2011). The null model is again set

up and simulated as in 1, and the bootstrap test is also applied to the bivariate vector

x∗
′

2,t = (u∗t ,π
∗
t ). However, the test system is augmented with lags of the co-variates

x∗
′

3,t = (y∗t ,∆s∗t ,(lt − st)
∗), i.e. x∗3,t−1...x

∗
3,t−K are added as unrestricted regressors.4

3. (Full system method) If the researcher suspects that there are some important covari-

ates which are known to be I(0), it seems natural to simply include them in the test

system. Thus the null model and the bootstrap framework is again given as in method

1, but here the vector to be tested is x∗
′

5,t = (u∗t ,π
∗
t , y∗t ,∆s∗t ,(lt − st)

∗), and since the

co-variates add three stationary directions to the system already under the null, the

relevant hypothesis to test cointegration between unemployment and inflation is r = 3

vs. r = 4 (again with K lags).

4 Simulation results

In order to have full control and to avoid any unknown properties of actual data we start

with the following artificial setup, where the role of unemployment and inflation is taken by

3It is not obvious from Benati’s description how exactly he handles the lag structure in his simulation,
i.e. whether or not he chooses a different lag length for the bivariate subsystem. We determine the lag length in
each rank test based on autocorrelation diagnostics.

4We do not include contemporaneous values of the covariates as this would obviously violate the necessary
assumption of uncorrelatedness. These pseudo covariates are re-generated in each simulation run, but are
then held fixed for the inner bootstrap. This corresponds to the test variant described in remark 6 in Swensen
(2011). His remark 3 also applies in our implementation, as we use the restricted non-cointegrated model in the
bootstrap algorithm.
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vt and wt .

4.1 Size simulations with artificial data

Consider the vector x3 = (v,w,z)′ where the first two components (vt , wt) are I(1) while the

last one (zt) is a stationary co-variate. Due to the presence of zt the formal cointegration

rank (dimension of the stationary directions) of the full system is one, even though the I(1)

variables are not cointegrated. The VECM representation is given by ∆x3,t = αβ ′x3,t−1 +

Γ1∆x3,t−1 + c+ εt with a diagonal covariance matrix and the trivial cointegration vector

β = (0, 0, 1)′. The loading coefficients are α = (0.1, 0.3, az)
′, the unrestricted constant

term is arbitrarily5 set to c = (0.9,−0.5, 0.3)′ and the short-run dynamics are specified as:

Γ1 =


0.4 0.3 0.1

0 0.5 0.1

0 0 0

 .

The covariate here is specified as an exogenous AR(1) process. Because of the insight from

Cavaliere, Rahbek, and Taylor (2015) that a large stationary roots in the system can affect

the empirical size of the boostrapped rank test, we analyze the cases az =−0.5 (small root)

and az = −0.08 (large root). As usual, the corresponding levels form VAR with two unit

roots is x3,t = B1x3,t−1 + B2x3,t−2 + εt , where B1 = αβ ′+ I3 + Γ1 and B2 = −Γ1. With

az =−0.5 the roots of the system are: 1, 1, 0.5, 0.5, 0.4, 0, while with az =−0.08 they are:

1, 1, 0.92, 0.5, 0.4, 0. In the latter case obviously the largest stationary root is quite close to

the unit circle and implies considerable persistence.

Running the test size simulations with the bootstrapped test variants described in Section

3, and using these two DGP variants, we obtain the results in table 1. First of all, despite

the small sample length of T = 100 the test size distortions are relatively mild. In the full-

system approach we even do not observe any impact of the larger stationary root on the

rejection frequency. In the bivariate partial-system setup (first row in the table) there is an

increase from an effective size of 7.1% to a size of 8.3% in the presence of additional high

persistence, i.e. by roughly one percentage point.

5Since the rank test with an unrestricted constant term is not similar and depends on the presence of the drift
term, it cannot be omitted.
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Table 1: Bootstrapped test size simulation, artificial DGPs

(simulated rejection frequencies under
H0, resampling as-if-iid)

small root (0.5) large root (0.92)

Bivariate, r0 = 0 0.070 0.083
Swensen 2 + 1 covar., r0 = 0 0.071 0.065

Full 3-dim, r0 = 1 0.052 0.050

Notes: Nominal 0.05 significance level; 5000 replications; sample size T = 100.

Nevertheless, while these results are far from the previously reported distortions with

apparent test sizes > 15% (at nominal 5%), given a borderline rejecting test result in actual

data (for a chosen nominal significance level) it may of course make a difference for the

decision whether the effective level of the test is α or 1.5α .

4.2 Simulated empirical size

We now turn to the actual data analysis. The underlying system in these subsections 4.2

through 4.4 is a 5-dimensional VAR using the cycle component of a standard Hodrick-

Prescott (HP) filter applied to real GDP as the relevant measure of the output gap yt (see

Figure 1). The two I(1) series are reported in Figure 2, and the interest rate data as further

stationary covariates in Figure 3.

Figure 2: Inflation and unemployment rates
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Notes: Data from the ECB’s AWM, 400×∆ log(Y ED) and 100×URX .
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Figure 1: Output gaps
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Figure 3: Interest rates
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We simulate the effective size (rejection probability under the null) of the bootstrapped

cointegration test in the three different test strategies. Following Benati’s approach we take

the parameters of a non-cointegrated 5-dimensional VAR fitted to the data as the posited
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Table 2: Test size simulations
(simulated rejection frequencies

under H0)
as-if-iid wild

Bivariate, r0 = 0 0.069 0.083
Swensen 2 + 3 covariates, r0 = 0 0.079 0.077

Full 5-dim, r0 = 3 0.033 0.040

Notes: Simulation of the size of the bootstrapped rank test. Nominal 5%; 2000 simulation
replications; the bootstrap test in each simulation draw uses 1000 replications. The
time series length is T = 109.

DGP; to this end the two I(1) variables are differenced and the stationary variables are left

as is. We use 4 lags to obtain the parameters under the null, as this satisfies both the AC and

ARCH residual tests.6 For fitting the model to the simulated data in each draw we do not

impose the original lag length but the algorithm chooses the lag order endogenously based

on diagnostic residual testing. As explained above, this is important to obtain empirical

residuals as close to white noise as possible.

Table 2 reports the size simulation results. For the rightmost column “wild”, the rank

test is based on a wild bootstrap scheme from the cited literature to account for potential

heteroskedasticity. The takeaway from that simulation is that again there are only mild

size distortions. The empirical sizes of the bivariate partial-system test and of Swensen’s

approach are roughly equal, and the full-system approach is mildly conservative which

implies that its size is only about half of the sizes of the other aproaches (for a nominal 0.05

level).

4.3 Test results

Although the main motivation for this study is the behavior of the bootstrap rank test in

partial systems in general, it is also interesting to replicate the test outcome from the orig-

inal application. Given that we do not have the strictly identical dataset and vintages we

do not expect identical results anyway, but the primary difference concerns the lag length

specification: Because of the importance of non-correlated residuals we base our lag choice

on diagnostic tests instead of information criteria.

6Having approximately white noise innovations is preferable because we use resampling for the simulation.
If we drew the simulation innovations from a parametric model instead the lag length would of course be less
important. In any case there are no qualitative differences whether one bootstrap variant or the other is used.
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Table 3: Bootstrapped cointegration rank tests (inflation / unemployment)

(bootstrapped p-values) iid wild

Bivariate 0.011 0.027
Swensen 2 + 3 covar., r0 = 0 0.182 0.213

Full 5-dim, r0 = 3 0.159 0.185

Notes: 4999 replications; lags are chosen based on diagnostic tests: bivariate – 7 lags,
Swensen’s approach – 7 lags, full system – 4 lags. The respective sample size T is
113 minus the lag order.

Our test results on the actual data are reported in Table 3; the bivariate results in the

first row are qualitatively similar to Benati (2015), namely that the null of no cointegration

is nominally rejected at the 5% level but not at the 1% level.7 The p-values are actually a

little lower than in the original study, such that even after considering the noticeable size

distortions from Table 2 the result would seem significant at the 5% level. However, the test

conclusion is still not very clearcut.

While the residuals are free from autocorrelation in the bivariate specification with seven

lags, there are always remaining ARCH effects, so the wild bootstrap variant (right column)

may be preferred for the bivariate case. The other approaches were not considered in the

original application.

Swensen’s approach, where the bivariate system is augmented with the stationary co-

variates, is also subject to ARCH-type residuals, again suggesting the use of the wild boot-

strap. Here the bootstrapped p-value is far above conventional critical levels (0.213), sug-

gesting non-rejection of no cointegration. Finally, the full-system setup with four lags is

well behaved, so the iid bootstrap is the method of choice, but it shares with Swensen’s

setup the non-rejection result (p-value 0.159).

4.4 Power assessment

The test results in Table 3 represent a dilemma. Given that in Table 2 we found that the

size distortions of the bootstrapped rank test variants are not dramatic, we do not prefer one

approach in Table 3 over any other based on the size assessment – that is, if we share the

prior belief about the relevant covariates; otherwise the bivariate test would be preferred.

7As a memo item note that the standard bivariate rank test without a bootstrap and using asymptotic critical
values here has a p-value ten times lower at 0.001.
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Table 4: Test power simulations

(simulated rejection frequencies) iid wild

Bivariate, r0 = 0 0.810 0.798
Swensen 2 + 3 covariates, r0 = 0 0.139 0.128

Full 5-dim, r0 = 3 0.224 0.235

Notes: Simulation of the power of the bootstrapped rank test for the fixed alternative given
by the cointegrated system (cointegration between unemployment and inflation plus
the three stationary covariates) estimated from actual data. Nominal 5%; 2000 simu-
lation replications; the bootstrap test in each simulation draw uses 1000 replications.
The time series length is T = 109.

But obviously the test outcomes are very different, so a test decision is difficult.

Therefore we turn to an assessment of the empirical power of the three test approaches.

To this end we run a similar simulation as before in Section 4.2, but using as the DGP a

system under the alternative hypothesis, with cointegration: the parameters are taken from

the estimated error correction system (VECM) of the actual data under an assumed rank of

4, including the cointegration coefficients β . Three of the four columns of β are trivial unit

vectors picking the stationary covariates, which technically increases the cointegration rank.

The only “actual” cointegration relationship is still the one between unemployment and

inflation. Then we simulate artificial data many times with resampled innovation processes,

and each time we run the bootstrapped cointegration rank test on the artificial data.

The results of that simulation exercise are reported in Table 4. There is a surprisingly

large gap between the power of around 80% in the bivariate case and the power below 25%

or even 15% in the full-system and Swensen approaches. This means that the latter two

approaches would quite rarely result in rejection of the null hypothesis even if it were false.

Against this background it appears that the bivariate setup is the most reliable, combining

only mild size distortions with large power advantages. Given the present covariates, the

most natural test conclusion would therefore seem to be that euro area unemployment and

inflation are cointegrated at a significance level of 5%, but not at the 1% level.
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5 Conclusions

The issue of how cointegration rank tests behave when they are applied in partial systems is

important, because in practice (a) either potentially relevant variables are unobservable, or

(b) it is fundamentally uncertain which covariates might be relevant. This study has partly

confirmed the worrying insight that rejection results in partial systems may sometimes be

misleading. However, the good news is that the amount of the size distortion appears far

smaller than previously suggested in the literature.

The conjecture (inspired from Cavaliere, Rahbek, and Taylor 2015) that the size distor-

tion may be due to additional large (stationary) roots in the DGP in the background was

only partly reflected in simulations with artificial data, and the effect did not appear large.

For the original application of a euro-area long-run Phillips curve we were only able to

replicate dramatic size distortions by simulations when the special AWM gap variable from

Figure 1 was used as a covariate. (Various vintages of that series were formerly published

as part of the area-wide model dataset of the ECB, see also the appendix). That time series

possesses a mean in the second subsample which is lower by about 72% of the series’ stan-

dard deviation; thus it may not really be stationary, which is unusual for such a gap concept.

We also suspect that this output gap measure was constructed depending on the in-sample

development of inflation, and that this causes the decline in the medium to long run. Hence

it induces a larger root in the fitted model that was then used as the DGP in the simulations.

Nevertheless, the quantitatively dramatic consequences of basing the simulations on this

particular co-variate remains surprising.

In contrast, the test size distortions are very limited with a standard HP filter gap in the

background, even though its univariate autoregressive root is also quite large (0.85). There-

fore, the econometric evidence for cointegration in this sample between unemployment and

inflation remains intact, unless one is completely convinced a priori that the true output gap

was given by the AWM measure. We also showed that using full-system methods instead

does not pay off, suffering from a severe lack of power.

Finally, it should be acknowledged that this study has addressed a very specific method-

ological aspect of Benati (2015), which also includes an impressive amount of other empir-

ical and theoretical work. It is not the purpose of this note to question the broad conclusions
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of his work, summarized as “uncertainty ... is ... substantial” (p. 27). We fully agree.

Nevertheless, we regard it as important to clarify for applied economists that conducting

cointegration tests in small samples with a bootstrap remains a justified practice and that its

results cannot be easily discarded as “statistical flukes”.
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Table 5: Test size simulations under 5-dim DGP with YGA
(simulated rejection frequencies

under H0)
resampling

as-if-iid
wild

Bivariate, r0 = 0 0.349 0.327
Swensen 2 + 3 covar., r0 = 0 0.067 0.086

Full 5-dim, r0 = 3 0.023 0.023

Notes: nominal level 0.05; 2000 replications, 7 lags in DGP, sample 1970Q2-1998Q4 (in-
cluding initial values).

A Supplementary results with the AWM gap

The euro-area output gap measure in Benati (2015) is not a standard HP-filtered cycle but

was based on a certain vintage “from the ECB’s database” (quote from the online appendix

to Benati, 2015). The precise calculation method of that series is unknown.

As a proxy we used the output gap series that we obtained from an earlier vintage of

the ECB’s area-wide model (AWM) database. In Figure 1 this proxy and the HP gap were

compared. At business-cycle frequencies the two series are highly correlated, as should

be expected. However, while the HP cycle measure fluctuates around a constant mean (by

construction), the AWM gap is more persistent in the longer run, starting with a sequence of

higher-than-average values and finishing the sample with many lower-than-average values.

Its AR(1) root is 0.90, opposed to the slightly lower root of the HP cycle of 0.85. Given

the limited effects of a large stationary root (see Section 4.1) we do not expect this property

alone to have a large impact.

In the test size simulations analogous to Section 4.2, using this described AWM gap

instead then requires 7 lags under the null to obtain innovations close to white noise. We

observe in Table 5 that again the full-system approach is somewhat conservative, Swensen’s

approach is mildly oversized, but that now the bivariate partial-system test approach is dra-

matically oversized with an empirical size over 30% for a nominal 5%. This is even more

drastic than Benati’s original finding (based on a different lag length and probably slightly

different data). Together with the actual test outcomes in Section 4.3 this represents a qual-

itatively successful replication of the original results.

It could be seen in Figure 1 that the initial values of the earlier AWM output gap are

artificially extended and perhaps not very intuitive. As a robustness analysis we therefore
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Figure 4: Shorter AWM output gap (YGA) range
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Table 6: Robustness: Test size simulations under 5-dim DGP with shorter YGA
(simulated rejection frequencies

under H0)
resampling

as-if-iid

Bivariate, r0 = 0 0.230
Swensen 2 + 3 covar., r0 = 0 0.089

Full 5-dim, r0 = 3 0.035

Notes: nominal level 0.05; 2500 replications, 4 lags in DGP, sample 1971Q4-1998Q2 (in-
cluding initial values).

took a more recent vintage of the AWM database where the output gap variable (YGA)

only ranges from 1971Q4 to 1998Q2, see Figure 4. (Note that in more recent vintages of

the AWM dataset the constructed YGA variable does not appear anymore.) In this shorter

sample without the starting episode 4 lags are sufficient, and the corresponding simulation

results are given in Table 6. It can be seen that the results correspond qualitatively to the ones

in Table 5. The bivariate partial-system test results of the actual data are of course unaffected

by any variations of the covariates in the background simulations and are therefore not

repeated.

For completeness we also report the bootstrapped actual test results with the older AWM

gap in Table 7. (Again, the bivariate test by definition does not depend on the output gap

variable and was already shown in Table 3.) For the Swensen approach there are always

remaining ARCH effects, thus the wild bootstrap results may be preferred, with a p-value

of 0.011 suggesting rejection of no cointegration at the 5% significance level. Given the

only mild size distortions of the Swensen approach this appears to be a valid result. The

full-system approach here implies well-behaved residuals, so the preferred variant is the

iid bootstrap, yielding a p-value of 0.366, not providing evidence in favor of cointegration.
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Table 7: Test results with actual data (AWM gap)

(bootstrapped p-values) iid wild

Swensen 2 + 3 covar., r0 = 0 0.007 0.011
Full 5-dim, r0 = 3 0.366 0.335

Notes: 2000 replications; lag choices: Swensen – 5 lags, Full-system – 7 lags.

This may be accurate or could also be due to the lack of power demonstrated before.
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