

WORKING PAPER

No. 190 · March 2018 · Hans-Böckler-Stiftung

FEP –
THE FORECAST EVALUATION
PACKAGE FOR GRETL
Based on FEP version 2.1, March 2018

Artur Tarassow*, Sven Schreiber**1

ABSTRACT

The FEP function package for the gretl program is a collection of
functions for computing different types of forecast evaluation statis-
tics as well as tests. For ease of use a common scripting interface
framework is provided, which is flexible enough to accommodate fu-
ture additions. Most of the functionality is also accessible through a
graphical dialog window interface within gretl. This documentation
explains the usage and capabilities as well as providing some econo-
metric background where necessary. An illustration with expert fore-
casts of euro area growth is also provided.

*1 University of Hamburg, artur.tarassow@gmail.com.
** IMK Düsseldorf and Free University Berlin.

—————————

FEP – the forecast evaluation package for gretl

Artur Tarassow and Sven Schreiber∗

based on FEP version 2.1, March 2018

Abstract

The FEP function package for the gretl program is a collection of functions
for computing different types of forecast evaluation statistics as well as tests.
For ease of use a common scripting interface framework is provided, which
is flexible enough to accommodate future additions. Most of the functionality
is also accessible through a graphical dialog window interface within gretl.
This documentation explains the usage and capabilities as well as providing
some econometric background where necessary. An illustration with expert
forecasts of euro area growth is also provided.

Contents

1 Introduction 2

2 The applyFCtests() function 2

3 Forecast descriptive statistics 4
3.1 Calculate the (forecast error) loss . 4
3.2 Draw some loss functions . 4
3.3 Tools for binary outcomes . 4

3.3.1 The Kuipers Score (KS) . 4
3.3.2 Probability scores – doPS() and probscore() 8

4 Evaluation of individual forecasts 8
4.1 Mincer-Zarnowitz test of forecast unbiasedness – doMZtest() 8
4.2 Holden-Peel test of forecast efficiency – doHPtest() 9
4.3 Campbell-Ghysels efficiency tests – doCGtest() 9
4.4 Elliott/Komunjer/Timmermann test (asymmetric loss) – doEKTtest() 12
4.5 Pesaran-Timmermann test of market timing – doPTtest() 13
4.6 Diebold-Lopez direction-of-change test – doDLtest() 15

∗Tarassow: University of Hamburg, artur.tarassow@gmail.com,
https://sites.google.com/site/arturtarassow;
Schreiber: IMK Düsseldorf and Free University Berlin, econ.svens.de.

1

5 Evaluation and comparison of multiple forecasts 15
5.1 Diebold-Mariano test – doDMtest() . 15

6 Menu-driven (GUI) usage 17

7 Illustrative example 18
7.1 Tests of unbiasedness . 19
7.2 Tests of efficiency . 20
7.3 Tests of (a)symmetric loss and forecast rationality 21
7.4 Forecast comparison . 22
7.5 Directional forecast . 23

8 Summary and outlook 25

A Data 27

1 Introduction

The FEP function package is a collection of gretl functions for computing different
types of forecast evaluation statistics as well as tests. Gretl is an open-source econo-
metrics and statistics program that offers both a command line and a graphical
menu-driven interface. Its core functions are implemented in C, but it also com-
prises a versatile scripting and matrix language named hansl which can be used
to develop contributed function packages easily. FEP is such a package written
in hansl. More information on gretl can be found online at http://gretl.sf.net.
The FEP package currently comprises the functions listed in Table 1. In Section 6
we explain the easy usage from gretl’s menu-driven interface (GUI), but until then
we focus on the scripting way of performing the analysis. A function package can
be downloaded and installed simply by invoking the install command:

install FEP

Then, in each work session, as with all function packages the FEP package needs to
be loaded by:

include FEP.gfn

2 The applyFCtests() function

This is a convenient top-level function which calls the other test functions in the
background as needed. The standard workflow is to define the needed gretl bun-
dle1 with your input data and choices, and then call this function with the appro-

1A “bundle” is a flexible gretl datatype which is basically a collection of other gretl objects. See
Section 10.7 of the gretl user guide (as of November 2017).

2

Table 1: Included functions
Function Code Description
1 applyFCtests() Top-level function
2 doDMtest() DM Diebold-Mariano regression based test of forecast

accuracy
3 doMZtest() MZ Mincer-Zarnowitz regression based test of optimal

(point) forecasts
4 doHPtest() HP Holden-Peel extension of the Mincer-Zarnowitz

regression based test
5 doCGtest() CG Campbell-Ghysels sign or signed rank (Wilcoxon

type) tests for unbiasedness or efficiency of forecasts
6 doEKTtest_series() EKT Elliott, Komunjer & Timmermann test of forecast

rationality under flexible loss
7 doDLtest() DL Diebold-Lopez direction of change test
8 doKS() KS Computes the (Hanssen-) Kuipers Score for forecasts

of binary outcomes
9 doPTtest() PT Pesaran-Timmermann test of market timing
10 DrawLoss() draws a single loss function and its associated

confidence interval
11 DrawLoss2() draws two loss functions and their associated

confidence intervals
12 getLoss() calculate the (forecast error) loss series
13 doPS() / probscore() PS calculate the log and quadratic probability scores for

forecasts of binary outcomes

priate string code. Here’s an example with the Mincer-Zarnowitz test:

bundle b

series b.y = growth # assuming ’growth’ exists in current workfile

series b.fc = myforecast # ditto

applyFCtests(&b, “MZ”)

The first three lines set up the bundle and put some relevant data in it.2 Note that
the names “y” and “fc” need to match exactly and are case sensitive. See Table 2 for
the possible and/or necessary bundle elements and their names, which depends
on the test that you wish to perform. It is possible to store additional elements in
the bundle that are not used by a certain test. Therefore you can set up the bundle
once and then pass it around as an input to various tests.

In the last line some things are noteworthy: The applyFCtests() function does
not have any return value, so the function call stands for itself without any assign-
ment to a variable. The results of the tests are instead added to the bundle (“b”
here) that is passed to the function. To actually enable the function to change the
input bundle we need to pass it in so-called pointer form, which just means to

2If you’re obsessed with saving lines of code, you might instead use something like the following:
bundle b = defbundle(“y”,growth, “fc”,myforecast).

3

prepend the ampersand character: “&b”.3 Finally, a string code must be specified
to indicate which test should be run, where the possible codes are given in Table 1.
There appear also some supplementary functions in that table which do not have
a string code; those functions have to be called directly and cannot be accessed
through applyFCtests(). On the other hand, several string codes may be included
in a single call to applyFCtests(), separated by spaces.

If the function is called like this, then there will typically be some printed output
showing the test results. The details depend on the respective background function,
see the corresponding documentation below. The other possibility to access the
results is to inspect the new members that are added to the bundle. Again, see
the documentation below to learn which new members each function adds to the
bundle.

3 Forecast descriptive statistics

3.1 Calculate the (forecast error) loss

The function getLoss() helps to calculate the forecast losses (disutilities) implied by
the given forecast errors, according to various loss function assumptions such as
lin-lin, square, linex, double linex. See Table 3.

3.2 Draw some loss functions

Draw a single (DrawLoss) or two (DrawLoss2) loss functions and their associated
confidence intervals. See Table 4.

3.3 Tools for binary outcomes

3.3.1 The Kuipers Score (KS)

The (Hanssen-) Kuipers Score (KS) is used to evaluate binary outcomes. Let f =

{0, 1} be a forecast of the binary variable y = {0, 1}. The KS is defined as the
difference between the probability of detection (POD) and the probability of false
detection (POFD).4 The POD is the proportion of times where y = 1 is correctly
predicted. The POFD is the proportion of times where y = 1 is wrongly predicted.
Thus, KS is defined as KS = POD − POFD. See Table 5 for the function interface
and elements.

3See “Function programming details”, Section 13.4 of the gretl user guide (as of November 2017).
4It seems that this terminology is not universal. Sometimes the POD might be called hit rate,

whereas usually the hit rate denotes something else. Similarly with the POFD and the false alarm
rate.

4

Table 2: Bundle members needed for each function
CG DL DM EKT* HP MZ KS PT PS

series inputs ([]: optional)

Realizations y y y y y
Forecast values fc f1, f2 fc fc fc
Forecast errors
(replaces y, fc)

(E) (E)

Binary indicator yup yup yup yup
Binary FC of yup fcup fcup fcup

FC of yup prob. pfc
Further tested [CGX]

list inputs

Exog. regressors z
Instruments z

scalar inputs (mostly integer / all are optional)

FC horizon [fhor]
Loss type [loss] [loss]

Lag (efficiency
test)

[k]

Bootstrap iter. [nboot] [nboot]
Robust switch [robust] [robust] [robust]

Initial shape [a0]
Verbosity [verb] [verb] [verb] [verb] [verb] [verb] [verb] [verb]

string input (optional)

Loss drawing [lossdraw]

Notes:

robust can be 0 (default) or 1 (use HAC/robust SE);
loss can be 1 (U-shape, default) or 2 (V-shape);
verb can be 0 (no details, default) or 1 (print details);

lossdraw can be “no” (default), “display”, or consist of path + filename;
fcup is binary, not a probability;

k can be 0 (default, no test on lags) or a positive (not too large) integer; note
that only a single lag is tested;

a0 can be between 0 and 1 (non-integer, default 0.5).
*: EKT refers to the doEKTtest_series() variant. For the matrix-based variant doEK-
Ttest() see the source code.

5

Table 3: Forecast error loss
Function getLoss(matrix fce, string LF[null], matrix

param[null], matrix realiz[null])
Description Calculate the (forecast error) loss
Return type matrix

Function
arguments

matrix fce T by k matrix of forecast errors; if realiz is
given, fce is understood as the forecasts
themselves

string LF
(optional)

specify loss function: "ll" (or “linlin”), "qq"
(or "quadquad"), "sq" (or "square", default),
"abs", "linex" (Varian), "dlinex" (or "dle") for
double linex (Granger)

matrix param
(optional)

loss function parameter(s), default 0.5;
param must be a 1-element or 2-element
vector

matrix realiz
(optional)

matrix of realizations

Output Returns a matrix with forecast error losses, of the same (T x k)
dimension as the input matrix.

Reference Varian [1975], Granger [1999]
Notes: About input format for param: For gretl versions until 2017a scalar values
must explicitly be provided as a pseudo matrix (e.g {0.4}) while for later versions,
gretl accepts a scalar as a 1x1 matrix.

6

Table 4: Draw losses
Function DrawLoss(int p, scalar aT, scalar V, string

fpath[null])
Description Draw (forecast error) loss
Return type none (void)

Function
arguments

int p: loss function type, 1 = lin-lin, 2 = quad-quad
scalar aT: loss function shape parameter α ∈ [0, 1]
scalar V: estimated variance of aT
string fpath (optional): null = display figure (default) or
provide complete "path+file name" to store figure

Output displays plot (or saves to file path)

Function DrawLoss2(int p, scalar aT1, scalar V1, scalar
aT2, scalar V2, string fpath[null])

Description Draw two (forecast error) losses
Return type none (void)

Function
arguments

int p: loss function type, 1 = lin-lin, 2 = quad-quad
scalar aT1: loss function shape parameter α ∈ [0, 1]
scalar V1: estimated variance of aT1
scalar aT2: loss function shape parameter α ∈ [0, 1]
scalar V2: estimated variance of aT2
string fpath (optional): null = display figure (default) or
provide complete "path+file name" to store figure

Output displays plot (or saves to file path)

Table 5: Kuipers Score

Function doKS(bundle *b)
Description compute the Kuipers Score
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series yup binary-valued series of actuals that takes

the value of unity for ups, otherwise zero
series fcup binary-valued forecast that takes the value

of unity for ups, otherwise zero
scalar verb 0 = no printout, 1 = print details

Output The following new elements are stored into the model bundle:
scalar KSstat: Kuipers score
matrix KSmat: matrix holding all classifications

Reference Pesaran [2015, p. 396]

7

Table 6: Probability scores

Function probscore(matrix y, matrix Pr)
Description computes the log (LPS) and quadratic (QPS) probability

scores
Return type matrix

Function
arguments

matrix y: binary-valued vector of actuals that takes the
value of unity for ups and otherwise zero
matrix Pr: vector of forecast probabilities

Output 2-element (1 by 2) vector with QPS, LPS

Table 7: Probability scores wrapper

Function doPS(bundle *b)
Description computes the log (LPS) and quadratic (QPS) probability scores
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series yup binary-valued series of actuals that takes

the value of unity for ups, otherwise zero
series pfc probability forecast (between 0 and 1) that

yup takes the value of unity

Output The following new elements are stored into the model bundle:
scalar qps quadratic probability score
scalar lps log probability score

3.3.2 Probability scores – doPS() and probscore()

The probscore() function computes forecast accuracy statistics used for probability
forecasts. The observed outcome is still binary, but in contrast to the Kuipers score
the forecast here is a continuous probability. See Table 6. The doPS() function is
just a thin wrapper around probscore that is harmonized with the evaluation test
functions in the package; see Table 7.

4 Evaluation of individual forecasts

4.1 Mincer-Zarnowitz test of forecast unbiasedness – doMZtest()

Define the h-step ahead forecast made in t as ft+h|t and the actual outcome as yt+h.
Mincer&Zarnowitz suggest to run the following regression:

yt+h = β0 + β1 ft+h|t + ut+h

Unbiasedness is viewed as a joint test of β0 = 0 and β1 = 1. (H0: Forecast is
unbiased and efficient. H1: Forecast is biased and/or inefficient.) Usually the cor-
responding test statistics is compared with asymptotic critical values from the F-

8

Table 8: Mincer-Zarnowitz test
Function doMZtest(bundle *b)
Description computes the Mincer-Zarnowitz test regression of unbiasedness
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series y actual observations
series fc h-step ahead forecast
scalar robust 0 = no robust SEs (default), 1 = compute

HAC SEs
scalar nboot 0 = no bootstrap (default), or number of

bootstrap iterations
scalar verb 0 = no printout (default), 1 = print details

Output The following new elements are stored into the model bundle:
scalar MZstat test statistics
scalar MZpval p-value

Reference Mincer and Zarnowitz [1969]

distribution.
However, remaining serial correlation in ut+h yields inefficient estimates. Also

the small sample properties are unknown. To account for these two potential sources
of inefficiency, the user can compute HAC robust standard errors as well as boot-
strap p-values. An intercept will be automatically inserted.

See Table 8 for a synopsis.

4.2 Holden-Peel test of forecast efficiency – doHPtest()

The Mincer-Zarnowitz regression can be extended to include another regressor (or
a whole vector of additional regressors), Zt, such that (assuming for simplicity that
Zt is a scalar value)

yt+h = β0 + β1 ft+h|t + β2Zt + ut+h .

The hypothesis to test for a strong form of unbiasedness involves the null β0 = 0,
β1 = 1 and β2 = 0. An intercept will be automatically inserted.

Again the user can compute HAC robust standard errors and/or bootstrap p-
values; see Table 9.

4.3 Campbell-Ghysels efficiency tests – doCGtest()

Here we understand “efficiency” in a broad sense, comprising unbiasedness for
example.

Let us define the one-period forecast errors as e1t = yt+1 − ft+1|t. An indica-
tor function indicates whether the forecast error is positive or negative such that

9

Table 9: Holden-Peel test
Function doHPtest(bundle *b)
Description computes the Holden-Peel variant of the Mincer-Zarnowitz

test regression of unbiasedness
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series y actual observations
series fc h-step ahead forecast
list z gretl list of additional control variables
scalar robust 0 = no robust SEs (default), 1 = compute

HAC SEs
scalar nboot 0 = no bootstrap (default), or number of

bootstrap iterations
scalar verb 0 = no printout (default), 1 = print details

Output The following new elements are stored into the model bundle:
scalar HPstat test statistics
scalar HPpval p-value

Reference Holden and Peel [1990]

u(z) = 1 if z ≥ 0 and u(z) = 0 otherwise. The test statistics of the sign test of
unbiasedness of forecast errors is

S =
T

∑
t=1

u(e1t),

where T is the number of available forecast errors. While the signed rank test (see
below) is defined as

W =
T

∑
t=1

u(e1t)R+
1t

with R+
1t referring to the rank of each forecast error when |e1t|,..., |e1T| are placed in

ascending order. The forecast errors are independent with zero median. The sign
statistic S is binomially distributed with Bi(T, 0.5). Under the additional assump-
tion of symmetrically distributed forecast errors around zero, the test statistics W
follows a Wilcoxon signed rank distribution. Note that this test is performed once
you set k = 0 (or leave it out, as this is the default; see Table 10).

This test idea can also be employed to test for serial correlation in the forecast
errors. Construct the product series Zk

1t = e1te1(t−k) with k ≥ 1, and compute the
statistics:

Sk =
T

∑
t=k+1

u(Zk
1t) and Wk =

T

∑
t=k+1

u(Zk
1t)R+

2t

where R+
2t is the signed rank of the product Zk

1t, t = 1, . . . , T. These location tests
were proposed by Dufour [1981]. Serial correlation in the forecast errors will move

10

Table 10: Campbell-Ghysels sign and signed rank

Function doCGtest(bundle *b)
Description Campbell-Ghysels sign and signed rank (Wilcoxon-type) tests

for unbiasedness or efficiency of forecasts
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series y actual observations
series fc forecast
(or series E forecast error)
scalar verb 0 = no printout (default), 1 = print details
series CGX
(optional)

variable for orthogonality (see also k)

scalar k set k > 0 to test efficiency with respect to
information at lag k (own lag of forecast
error if X is absent), else k = 0 (or omit) to
test for unbiasedness

Output The following new elements are stored into the model bundle:
scalar
CGSIGNstat and
CGWILCstat

test statistic

scalar
CGSIGNpval and
CGWILCpval

p-value

Reference Campbell and Ghysels [1995], Campbell and Ghysels [1997],
Dufour [1981]

Notes: The calculation of CGWILCpval, the p-value of the Wilcoxon-type signed
rank tests, depends on the WSRpvalue function in the special package “extra” for
gretl (≥v0.41). Please install that package manually from the gretl package reposi-
tory if the automatic loading fails.

the centre of their product away from zero. The sign statistic Sk is binomially dis-
tributed with Bi(T − k, 0.5). The test statistics Wk follows a Wilcoxon signed rank
distribution of size T− k. Note, both tests on serial correlation require to set the op-
tion k > 0, and the necessary product series Zk

1t will be constructed automatically.
Lastly, one can use this framework to assess whether the forecast has made

efficient use of the available information represented by the series X in t. For this,
one needs to construct the product series Zk

t = ehtXc
t−k with k > 0 based on the

recursively re-centered series Xc
t = Xt −median(X1, X2, . . . , Xt).5 This way of re-

centering requires, however, that the series Xt is stationary and has no trend.

5“Recursive” in the sense that for the calculation of the median in each period t only realizations
up to t are used, not all observations from the forecast evaluation sample. Otherwise the centering
would contradict the real-time information flow and would not be feasible for actual forecasting.

11

The sign and signed rank statistics are given by

Sok =
T

∑
t=k+1

u(Zk
t) and Wok =

T

∑
t=k+1

u(Zk
t)R+

1t,

noting that the ranks used refer to the forecast errors, not to Zk
t , to obtain a statistic

with a known and valid distribution; see Campbell and Ghysels [1995, pp. 3] or
Campbell and Ghysels [1997, p. 560] for a discussion.6 This orthogonality test can
be achieved by passing the series as CGX in the bundle. See Table 10.

4.4 Elliott, Komunjer, and Timmermann test with asymmetric loss – doEK-
Ttest()7

This is a test for forecast rationality that allows for asymmetric loss. As a side
product the parameters of a general class of loss functions can be estimated.

Elliott et al. [2005] propose a flexible class of loss functions, the so-called EKT
loss function:

L(e) = [α + (1− 2α)I(e < 0)] |e|p, α ∈ [0, 1]

where I is an indicator function which equals one if the forecast error e = y− f <

0, and otherwise zero. Asymmetric loss is given for α 6= 0.5, and where values
exceeding 0.5 indicate greater aversion to positive forecast errors. Setting p = 1
results in a lin-lin loss function with possibly different slopes under asymmetric
loss. The quadratic loss function is given for the special setting p = 2 and α = 0.5.
Asymmetric quadratic loss functions are produced under p = 2 and α 6= 0.5.

The unknown loss function parameter α is estimated by means of a linear in-
strumental variable (IV) approach. The computation of the linear IV estimator α̂ is
done iteratively. Using the same notation as in Elliott et al. [2005] we set the initial
weighting matrix S to be the identity matrix Id, where d refers to the number of
instruments used. Based on the initial S one can compute the initial α̂1 which in
turn can be used to update the precision matrix S−1 = S−1(α̂1). These steps are
repeated until some convergence criteria is met.

The user can use the framework to (i) test for symmetric loss, and (ii) for ra-
tionality. As α̂ is asymptotically normal and its variance is identical to the one
obtained by the standard GMM estimator, one can test the null of symmetry, H0 :

6When Xt is strictly exogenous without any feedback occurring from the forecast errors to future
realizations of X the ranks of Zk

t could also be used, and this would then indeed equal a Wilcoxon
signed rank test on Zk

t . This variant is not implemented, however, because the assumption appears
very strong and hardly relevant in practice.

7For historical reasons and backward compatibility the doEKTtest function up to FEP version
2.1 has operated on matrices. The preferred interface now is based on a bundle and series as de-
scribed in this document. The doEKTtest_series function has fulfilled that role since version 2.0.
Starting with version 2.2 the doEKTtest function will follow the preferred interface (be an alias for
doEKTtest_series), and a new wrapper function doEKTtest_matrix will provide the old access for
those who need it.

12

Table 11: Elliott, Komunjer and Timmermann test

Function doEKTtest_series(bundle *b) <doEKTtest(bundle *b) from v2.2>
Description Elliott, Komunjer and Timmermann test for forecast

rationality that allows for asymmetric loss
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series y actual observations
series fc h-step ahead forecast
(or series E forecast error)
list z instruments
scalar a0 initial value of shape parameter alpha

(between 0 and 1, default 0.5)
scalar loss Loss function type: 1 = U-shape (default), 2

= V-shape
scalar verb 0 = no printout (default), 1 = print details
string lossdraw "no" = no draw (default), "display" =

immediate plot, "Path+filename"

Output The following new elements are stored into the model bundle:
scalar alpha estimated shape parameter
scalar V estimated variance of alpha
scalar SymTest test statistics of test for symmetric loss

function
scalar SymPval p-value of test for symmetric loss function
scalar RatTest test statistics of test for rationality

conditional on estimated alpha
scalar RatPv p-value of test for rationality conditional on

estimated alpha
scalar RatTest05 test statistics of test for rationality

conditional on symmetry (as if alpha = 0.5)
scalar RatPv05 p-value of test for rationality conditional

conditional on symmetry (as if alpha = 0.5)

Reference Elliott et al. [2005]

α = 0.5, against the alternative, H0 : α 6= 0.5, by a t-test.
For a given p0 the user can test for rationality if the number of instruments

d > 1. Testing for over-identification by means of a J-type test provides a joint test
for rationality of the forecasts. The EKT approach allows to test for rationality (i)
either for an unknown α or (ii) by imposing the restriction of symmetry α = 0.5.

See Table 11 for the synopsis, and note that the instruments z should not contain
an intercept, it will be added automatically.

4.5 Pesaran-Timmermann test of market timing – doPTtest()

While the Kuipers score just computes the difference between the hit rate, H, and
the false alarm rate, F, it is not a proper statistical test. Pesaran and Timmermann

13

Table 12: Pesaran-Timmermann test of market timing

Function doPTtest(bundle *b)
Description Pesaran-Timmermann test of market timing based on binary outcomes
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series yup: binary-valued series of actuals that takes

the value of unity for ups, otherwise zero
series fcup: binary-valued forecast that takes the value

of unity for ups otherwise zero
scalar robust: 0 = correlation-based PT test, 1 =

regression-based with HAC robust SEs
scalar verb: 0 = no printout, 1 = print details

Output The following new elements are stored into the model bundle:
scalar PTstat test statistic
scalar PTpval p-value

Reference Pesaran and Timmermann [1992], Pesaran [2015, p. 398]

[1992, PT] have proposed a simple test on market timing using binary outcomes.
The basic idea is to test whether predicted ups are independent of actual ups or
not.

Let f = {0, 1} be a forecast of the binary variable Y = {0, 1}. Denote the cor-
responding time series of binary predictions as xt and actual realizations of “ups”
(or unity values) as yt. How the forecaster obtains the forecasts xt –e.g. through a
model of a latent variable in the background– is irrelevant here.

The PT test statistic can be approximated by the t-ratio of the β1 coefficient of
the following OLS regression

yt = β0 + β1xt + ut.

Under the null hypothesis that predictions and realizations are independently dis-
tributed, the restriction β1 = 0 holds. The test statistic follows asymptotically a
standard normal distribution. A rejection of the null hypothesis indicates predic-
tive failure. Serial correlation in the errors, ut, are likely to occur but can be dealt
with by using Bartlett weights to compute HAC standard errors.

A second –non-regression based– approach to compute the test instead is to rely
on the correlation coefficient between forecasts and predictions, ρ. The test statistics
is computed by ρ ×

√
T where T refers to the number of forecasts available. The

test statistic also follows a standard normal distribution asymptotically and cannot
be robustified.

See Table 12 for a synopsis.

14

Table 13: Diebold-Lopez test

Function doDLtest(bundle *b)
Description Diebold-Lopez test for predictive accuracy of a

direction-of-change forecast
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series yup binary-valued series of actuals that takes

the value of unity for ups, otherwise zero
series fcup binary-valued forecast that takes the value

of unity for ups otherwise zero
scalar verb 0 = no printout (default), 1 = print details

Output The following new elements are stored into the model bundle:
scalar DLstat test statistic
scalar DLpval p-value
scalar DLinfo additional info value

Reference Diebold and Lopez [1996]

4.6 Diebold-Lopez direction-of-change test – doDLtest()

Performs the Diebold-Lopez direction of change test which is in principle just Pear-
son’s χ- square test. H0: The direction-of-change forecast has no value meaning
that the forecasts and realizations are independent. H1: The direction-of-change
forecast has some value. (The side output of DLinfo is closely related to the Kuipers
score, namely by adding unity to it.)

See Table 13 for a synopsis.

5 Evaluation and comparison of multiple forecasts

5.1 Diebold-Mariano test – doDMtest()

First, note that there also exists a dedicated contributed gretl function package
called “DiebMar.gfn” by Giulio Palomba. It only partly overlaps with the features
of the doDMtest() function, so it might be useful for you, too.

The Diebold-Mariano (DM) test of equivalent expected loss takes explicitly into
account the underlying loss function as well as sampling variation in the average
losses.

We define the h-step ahead forecast error and its associated loss function by
et+h|t and L(et+h|t), respectively. The loss differential of two non-nested forecasts
for observation t + h is given by d12,t+h =L(e1,t+h|t)− L(e2,t+h|t). Specifically, one
can test the null hypothesis of equal predictive accuracy

H0 : E(d12,t+h) = 0

15

Table 14: Diebold-Mariano test
Function doDMtest(bundle *b)
Description Diebold-Mariano test for predictive accuracy, computation

regression-based with HAC robust SEs
Return type none (void)

Function
arguments

Pointer to the model bundle. This bundle includes as members:
series y realized values
series f1 forecast values of model 1
series f 2 forecast values of model 2
scalar fhor forecast horizon (default 1)
scalar loss Loss function type: 1 = U-shape (default), 2

= V-shape
scalar verb 0 = print no details (default), 1 = print

details

Output The following new elements are stored into the model bundle:
series L loss differentials
scalar DMstat test statistics (not small-sample adjusted)
scalar DMpvaln p-value based on standard normal
scalar DMpvalt p-value based on t-distribution
scalar DMpvalssc p-value using small-sample correction

Reference Diebold and Mariano [1995], Harvey et al. [1997]

against either an one-sided alternative or against a two-sided alternative. Under
the null, the test statistics is DM = d̄12,t+h/σ̂d̄12,t+h

→ N(0, 1) where d̄12,t+h =

F−1 ∑F
j=1 d12,j,t+h refers to the sample mean loss differential and σ̂d̄12,t+h

is a consis-
tent estimate of its standard deviation based on F forecasts available.

However, due to serial correlation in the forecast errors, we compute alterna-
tively the following regression-based version using OLS combined with HAC ro-
bust standard errors:

d12,t+h|t = β + ut

where ut is an i.i.d. zero-mean error term. The null of equal forecast accuracy be-
tween the two point forecasts is defined as β = 0. The test statistics, tDM, follows
asymptotically a standard normal distribution.

Harvey et al. [1997] have suggested the following small-sample corrected degress-
of-freedom adjusted t-statistics

tHLN = [1 + F−1(1− 2× h) + F−2h× (h− 1)]0.5 × tDM

where F and h refer to the number of forecasts and the h-step forecast horizon. See
Table 14 for a synopsis.

16

Figure 1: Screenshot of the FEP graphical interface (under Windows 10)

6 Menu-driven (GUI) usage

To install the FEP package using the GUI one follows the usual steps for contributed
function packages: Open the function package list window for example via the
menu File / Function packages / On server, then find the FEP entry and click the
install button (or mouse right-click and choose Installation in the context pop-up
menu).

For the precise meaning of the inputs to the respective functions please see the
function documentation above, but ideally, using this package from gretl’s menu
interface should be mostly self-explanatory. From the menus you can only execute
one test at a time.

Figure 1 shows the layout of the central window where choices and specifi-
cations are entered. In order to keep the number of argument fields in this win-
dow within reasonable bounds, some fields have different overloaded meanings
depending on which test is chosen. For example, the penultimate entry field ex-
pects a gretl list, and this input is relevant for the HP, DL, EKT, and CG variants.8

The output from executing the function from the GUI is presented to the user in
a new window, mostly simply with the printed test result. At the top of that output
there is a toolbar including “save” and “bundle” icons. The save button allows
you to save first the textual output, and secondly the whole produced bundle to

8This will be transferred internally to the various function arguments “z”, “ref”, or “CGX”, re-
spectively.

17

the current gretl session. The bundle button in turn gives you direct access to the
various produced bundle members which can also be saved.9

Note that only the actual test functions are choosable from the GUI, not the
helper functions from Section 3.

7 Illustrative example

In the following an applied example using survey-based forecasts for annual growth
of euro area (EA) real GDP is presented. Forecasts are averages based on surveys
among professional forecasters, f ct, conducted by the Economist magazine and ob-
tained through the Macrobond database. The realizations, yt, are from the AMECO
database provided by the European Commission. Both series’ values are reported
in the data appendix A, and Figure 2 depicts the forecast errors, et = yt − f ct. For
the following code to work we assume that a gretl annual time-series datafile is
loaded with the series named y and fc.

In the following the main (but not all) functions of the FEP package are applied.
Assuming the package is already installed on the local machine, at the beginning
of the session the package must be loaded with:

include FEP.gfn

Figure 2: Forecast error for euro area growth of real GDP

9The concrete images of those icons will depend on your operating system and/or your desktop
theme, but they are the first two buttons from the left.

18

7.1 Tests of unbiasedness

We run the parametric Mincer-Zarnowitz test on forecast unbiasedness using boot-
strap p-values (999 iterations, iid) and HAC standard errors, see Section 4.1. First
an empty bundle is defined, then the series and parameters are added:

bundle b = null

series b.y = y # realizations

series b.fc = fc # forecasts

b.nboot = 999

b.robust = 1 # 1= HAC robust VCV

b.verb = 1 # 1= print details

applyFCtests(&b, "MZ") # call the top-level function

Yields as output:

*** Mincer & Zarnowitz test

*** on forecast unbiasedness

Method: Approach using HAC robust VCV.

Bootstrap p-value using 999 iterations.

H0: forecasts are unbiased

Test stat.: 5.6758

p-value.: 0.3874

As can be seen, the null hypothesis cannot be rejected at standard levels which
indicates that the forecast errors are unbiased. (Please bear in mind that your exact
numerical values may differ slightly due to different initializations of the bootstrap.
To avoid this you would have to give gretl’s random number generator a seed: set
seed <whatever>)

A non-parametric alternative test approach for forecast unbiasedness was pro-
posed by Campbell and Ghysels, as discussed in Section 4.3. Assuming that the
previous code has been executed and thus b, b.y, b.fc and b.verb are already de-
fined, the CG test can be performed as follows:10

applyFCtests(&b, "CG")

printf "P-value Wilcoxon-type rank sign test = %.3f\n", b.CGWILCpval

printf "P-value sign test = %.3f\n", b.CGSIGNpval

Yields as output:

10Formatting the number printout as %.3f in the printf command is already slightly advanced,
rounding to three decimal digits. A straightforward alternative that usually also works fine for float-
ing point numbers is %g.

19

**

You selected the test(s) of unbiasedness.

**

P-value Wilcoxon-type rank sign test = 0.122

P-value sign test = 0.096

These nonparametric tests do not provide strong evidence against unbiasedness,
either. However, if a researcher assumed an underlying asymmetric distribution
the only adequate test would be the nonparametric sign test, which might be con-
sidered borderline significant here.11

7.2 Tests of efficiency

The Holden-Peel test is a parametric test of efficiency, see Section 4.2. We simply
use lagged forecasts, f ct−1, as the conditional variable. The HP test with bootstrap
HAC standard errors is easily executed by:

list b.z = fc(-1) # use lagged forecast as conditional variable

applyFCtests(&b, "HP")

Yields as output:

*** Holden & Peel test

*** on forecast efficiency

Method: Approach using HAC robust VCV.

Bootstrap p-value using 999 iterations.

H0: forecasts are efficient

Test stat.: 8.1013

p-value.: 0.2763

Hence, this parametric test result does not indicate any issue with forecast effi-
ciency conditional on f ct−1.

A non-parametric version is also provided by the CG test approach which can
be used as follows. Note that here k already specifies the lag to be applied to CGX,
so the series for CGX should be given contemporaneously (here: fc), not with a lag
(not: fc(-1)); otherwise errors due to missing values may occur.

11The empirical skewness in this sample is -0.6. A skewed distribution would obviously imply
non-Gaussianity; the Shapiro-Wilk test of the null of a normal distribution yields a p-value of 0.096,
the Doornik-Hansen test in turn produces 0.152, thus somewhat borderline again.

20

b.k = 1

series b.CGX = fc

applyFCtests(&b, "CG")

printf "P-value Wilcoxon-type rank sign test = %.3f\n", b.CGWILCpval

printf "P-value sign test = %.3f\n", b.CGSIGNpval

Yields as output:

**

You selected the test(s) of orthogonality at lag 1.

**

P-value Wilcoxon-type rank sign test = 0.109

P-value sign test = 0.210

Thus, the non-parametric test results broadly agree with the parametric ones, al-
though we might add that for lag 2 the result is quite different. (The reader is in-
vited to verify this statement using the FEP package and the data in the appendix.)

7.3 Tests of (a)symmetric loss and forecast rationality

The framework proposed by Elliott et al. [2005] extends parts of the previous anal-
ysis to the case of asymmetric loss functions, cf. Section 4.4. We will use lagged
forecast errors as an additional instrument apart from an intercept for illustration,
and assume a quad-quad loss function. (Strictly speaking, the explicit specification
of b.loss is redundant, since the quadratic U-shape is the default, see Table 2.)

b.loss = 1 # Loss function (1=quad-quad, 2=lin-lin)

series e = y - fc # forecast error

series e1 = e(-1) # lagged forecast error

b.z = e1 # instrumental variable

smpl e e1 --no-missing # avoid mismatch

b.a0 = 0.5 # Initial value of shape param aT

string b.lossdraw = "display"

applyFCtests(&b, "EKT")

smpl full

Yields as output:

Number of iterations before convergence = 8

Test for Symmetry: H0: aT=0.5 vs. H1: aT!=0.5

Estim. alpha = 0.236

21

Test stat. = -2.41

P-value = 0.0158

Rationality Test

Estim. alpha = 0.236

J-statistics = 1.46

P-value = 0.227

Rationality Test

Alpha fixed to 0.5

J-statistics = 7.28

P-value = 0.0262

The null of symmetric loss can be rejected at the 5% level, and after imposing sym-
metry anyway one would indeed reject the null of forecast rationality at the 5%
level. However, under the estimated asymmetric loss function one cannot reject
the null of forecast rationality. Here the suggested conclusion is that the forecasts
may be regarded as “rational”, but only if one departs from the assumption of a
symmetric forecast error loss function.

The estimated α̂ is 0.236 which indicates greater aversion to negative forecast
errors. This is perhaps not surprising considering the sequence of positive forecast
errors in the first part of the sample. Apart from the reported test results, a plot of
the estimated loss function is returned (see Figure 3). The upper and lower lines
represent a confidence band due to the estimation uncertainty of the asymmetry
parameter α̂.

7.4 Forecast comparison

The Diebold-Mariano approach tests for equal predictive accuracy of two compet-
ing forecasts (Section 5.1). We compare the current forecast for simplicity with the
pre-year (naive) forecast assuming linear loss. The test is called by:

b.f1 = fc # FC 1 series

b.f2 = y(-1) # FC 2 series: naive pre-year realization

b.loss = 2 # 1="U-shape", 2="V-shape"

applyFCtests(&b, "DM")

Yields as output:

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Lo
ss

Forecast Error

Quad.-Quad., alpha-hat=0.236 (±2 S.E.)

Figure 3: Estimated loss function using the EKT approach

*** Diebold & Mariano (1995) test

*** on equal forecast accuracy

Loss: V-shape linear.

Forecast horizon: 1

H0: forecasts are equally accurate

Test stat.: -2.5611

p-value (stand. normal): 0.0104

p-value (t-distributed): 0.0209

p-value (small-sample): 0.0178

The null hypothesis can be rejected at the 5% significance level for all three versions
computed. The negative test statistic (-2.56) indicates that the “real” survey-based
forecast is more accurate compared to the naive one.

7.5 Directional forecast

Apart from point forecasts, directional forecasts may be of interest. The Kuipers
score (KS) is a widely applied simple statistic to summarize directional forecasts,
see Section 3.3.1. The following lines first compute the dummy variables yup and
fcup which take the value of one if the period-change in realized (or forecast) values
is positive (otherwise zero), and then execute the KS computation.

series b.yup = (diff(y) > 0)

series b.fcup = (diff(fc) > 0)

applyFCtests(&b, "KS") # could also use doKS(&b)

23

Yields as output:

*** Kuipers Score ***

Hit Rate = 1.000

False Alarm Rate = 0.100

Kuipers Score = 0.900

Accordingly, the forecasts have a perfect hit rate of 1 meaning that all “ups” are
correctly predicted. The false alarm rate is only 10% such that the KS statistic is 0.9
which indicates a good directional forecast performance.

Finally, the Diebold-Lopez test (Section 4.6) tests whether a directional forecast
is significantly different from a coin flip. For reasons of backwards compatibility
with older FEP versions the bundle for the DL test currently must not contain other
non-binary y and fc series, and therefore we cannot re-use the previously defined
bundle. Instead we build a new bundle here.

The positive test statistic of 1.88 indicates that the actual forecast outperforms a
pure coin flip which is statistically confirmed by the p-value.

bundle bDL = null

bDL.verb = 1

series bDL.yup = (diff(y) > 0)

series bDL.fcup = (diff(fc) > 0)

applyFCtests(&bDL, "DL")

Yields as output:

*** Diebold & Lopez test

*** on directional change

H0: y(t) and fc(t) are independent

Info-value: 1.8750

Test stat.: 13.3875

p-value.: 0.0003

In this context the Pesaran-Timmermann test described in Section 4.5 may be seen
as an alternative test for directional forecasts.

24

8 Summary and outlook

FEP makes it easy to analyze and evaluate forecasts and the associated forecast er-
rors (ex post). It already offers many popular tests that have been proposed in the
literature. The plan is to extend the package continually and to further broaden its
scope. For example, tools to analyze density forecasts would be useful. Another
interesting area for inclusion could be recent developments in the literature con-
cerning the comparison of multiple forecasts. The bundle-based framework of FEP
would allow these extensions while maintaining a coherent user interface.

References

B. Campbell and E. Ghysels. Federal budget projections: A nonparametric assess-
ment of bias and efficiency. The Review of Economics and Statistics, 77(1):17 – 31,
1995.

Bryan Campbell and Eric Ghysels. An Empirical Analysis of the Canadian Budget
Process. Canadian Journal of Economics, 30(3):553–76, August 1997. URL https:

//ideas.repec.org/a/cje/issued/v30y1997i3p553-76.html.

Francis X Diebold and Jose A. Lopez. Forecast evaluation and combination. In G. S.
Maddala and C. R. Rao, editors, Handbook of Statistics, volume 14 of Statistical
Methods in Finance, pages 241–268. 1996.

Francis X. Diebold and Roberto S. Mariano. Comparing predictive accuracy. Journal
of Business and Economic Statistics, 20(1):134–144, 1995.

Jean-Marie Dufour. Rank tests for serial dependence. Journal of Time Series Analy-
sis, 2(3):117–128, 1981. ISSN 1467-9892. doi: 10.1111/j.1467-9892.1981.tb00317.x.
URL http://dx.doi.org/10.1111/j.1467-9892.1981.tb00317.x.

Graham Elliott, Ivana Komunjer, and Allan Timmermann. Estimation and testing
of forecast rationality under flexible loss. Review of Economic Studies, 72:1107–
1125, 2005.

C.W.J. Granger. Outline of forecast theory using generalized cost functions. Spanish
Economic Review, 1:161–173, 1999.

David Harvey, Stephen Leybourne, and Paul Newbold. Testing the equality of pre-
diction mean squared errors. International Journal of Forecasting, 13(2):281–291,
1997. URL https://ideas.repec.org/a/eee/intfor/v13y1997i2p281-291.

html.

K Holden and David Peel. On Testing for Unbiasedness and Efficiency of Forecasts.
The Manchester School of Economic & Social Studies, 58(2):120–27, 1990. URL http:

//EconPapers.repec.org/RePEc:bla:manch2:v:58:y:1990:i:2:p:120-27.

25

J. Mincer and V. Zarnowitz. The evaluation of economic forecasts. In J. Mincer,
editor, Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Per-
formance, pages 1 – 46. NBER, NBER, 1969.

M. Hashem Pesaran. Time Series and Panel Data Econometrics. Num-
ber 9780198759980 in OUP Catalogue. Oxford University Press, 2015.
ISBN ARRAY(0x79444480). URL https://ideas.repec.org/b/oxp/obooks/

9780198759980.html.

M Hashem Pesaran and Allan Timmermann. A Simple Nonparametric Test of Pre-
dictive Performance. Journal of Business & Economic Statistics, 10(4):561–65, 1992.
URL https://ideas.repec.org/a/bes/jnlbes/v10y1992i4p561-65.html.

H.R. Varian. A Bayesian approach to real estate assessment. In S.E. Fienberg
and A. Zellner, editors, Studies in Bayesian Econometrics and Statistics in Honor
of Leonard J. Savage, pages 195–208. North-Holland, Amsterdam, 1975.

26

A Data

For replication purposes we reproduce the data used in the illustration in Section
7. For the definitions see the text; source Macrobond and AMECO.

fc y

2000

2001 1.5 2.123350

2002 0.7 0.980211

2003 0.5 0.661216

2004 1.8 2.299620

2005 1.4 1.679013

2006 2.7 3.228410

2007 2.6 3.049257

2008 0.8 0.429603

2009 -3.9 -4.514502

2010 1.7 2.081707

2011 1.5 1.605639

2012 -0.5 -0.886516

2013 -0.4 -0.240252

2014 0.8 1.336558

2015 1.5 2.070988

2016 1.7 1.811255

2017 2.4 2.227502

2018 2.4 2.099555

27

Impressum

Publisher: Hans-Böckler-Stiftung, Hans-Böckler-Str. 39, 40476 Düsseldorf, Germany
Phone: +49-211-7778-331, IMK@boeckler.de, http://www.imk-boeckler.de

IMK Working Paper is an online publication series available at:
http://www.boeckler.de/imk_5016.htm

ISSN: 1861-2199

The views expressed in this paper do not necessarily reflect those of the IMK
or the Hans-Böckler-Foundation.

All rights reserved. Reproduction for educational and non-commercial
purposes is permitted provided that the source is acknowledged.

mailto:IMK@boeckler.de
mailto:IMK@boeckler.de
http://www.boeckler.de/imk_5016.htm

