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1 Introduction

The way in which the dynamic interaction between stock markets and the macroeconomy has been

understood by the economics profession has evolved significantly over the last thirty years. As Shiller

(2003) has argued, while the rational representative agent framework and the related Efficient Market

Hypothesis represented the dominant theoretical modeling paradigm in financial economics during the

1970s, the behavioral finance approach has gained increasing ground within the economics community

over the last two decades. The main reason for this significant paradigm shift is well known: following

Shiller (1981) and LeRoy and Porter (1981), a large number of studies have documented various

empirical regularities of financial markets – such as the excess volatility of stock prices – which are

clearly inconsistent with the Efficient Market Hypothesis, see e.g. Frankel and Froot (1987, 1990),

Shiller (1989), Allen and Taylor (1990), and Brock et al. (1992), among many others. During the 1990s

several researchers like Day and Huang (1990), Chiarella (1992), Kirman (1993), Lux (1995) and Brock

and Hommes (1998) have developed models of financial markets with heterogenous agents following

the seminal work by Beja and Goldman (1980) in order to explain such empirical regularities. Ever

since, financial market models with heterogeneous agents using rule-of-thumb strategies have become

central in the behavioral finance literature, see e.g. Chiarella and He (2001, 2003), De Grauwe and

Grimaldi (2005), Chiarella et al. (2006), Franke and Asada (2008) and Dieci and Westerhoff (2010).

The importance of different types of heterogeneity (regarding preferences, risk aversion or available

information) and boundedly rational behavior at the micro level for the dynamics of the macroeconomy

has also been increasingly acknowledged in macroeconomics (Akerlof, 2002, 2007). In this context,

a particularly fruitful new strand of the literature has focused on the consequences of heterogeneous

boundedly rational expectations for the dynamics of the macroeconomy and the conduct of economic

policy, see e.g. Branch and McGough (2010), Branch and Evans (2011), De Grauwe (2011, 2012),

Proaño (2011, 2013), among others. In these studies, the Brock and Hommes (1997) (BH) approach

has been the preferred specification for the endogenous switch between alternative heuristics. In

contrast, the development of macroeconomic models using the Weidlich-Haag-Lux (WHL) approach

(see Weidlich and Haag, 1983 and Lux, 1995) is still in a nascient stage, with Franke (2012), Franke

and Ghonghadze (2014), Flaschel et al. (2015), Chiarella et al. (2015) and Lojak (2016) as notable

exceptions.

While the WHL and the BH approaches are quite similar in spirit – and similarly close to Keynes’

(1936) and Simon’s (1957) views on expectations under bounded rationality (see also Kahneman and

Tversky, 1973 and Kahneman, 2003) – there is a fundamental difference between them: In the BH

approach the variation in the share of agents using a particular heuristic depends on a measure of

utility, or forecast accuracy, related to that particular rule of thumb which is thought to be relevant at

the microeconomic level. In contrast, in the WHL approach the switch between different heuristics or

attitudes, such as optimism or pessimism, is determined by an aggregate sentiment index composed
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e.g. by macroeconomic variables describing the state of the economy in the business cycle, see also

Franke (2014). The WHL approach thus incorporates an additional link from the macroeconomic

environment to microeconomic decision-making based on psychological grounds and on Keynes’ notion

that “Knowing that our own individual judgment is worthless, we endeavor to fall back on the judgment

of the rest of the world which is perhaps better informed. That is, we endeavor to conform with the

behavior of the majority or the average. The psychology of a society of individuals each of whom is

endeavoring to copy the others leads to what we may strictly term a conventional judgment.” (Keynes,

1937, p. 114; his emphasis).1

In this latter line of research the main contribution of this paper is to study the effects of aggregate

sentiments in stock markets on the real economy using the WHL approach to model the expectations

formation process in stock markets. More specifically, we incorporate aggregate sentiment dynamics

in a stock market populated by heterogeneous agents, and examine the effects of herding and spec-

ulative behavior in combination with real-financial market interactions. We adopt the distinction

between chartists and fundamentalists which may be a key ingredient to explain bubbles as argued

by Brunnermeier (2008). Ceteris paribus, chartists tend to exert a destabilizing influence on the price

of financial assets, whereas the presence of fundamentalists is stabilizing.

In spite of its simplicity, our model features a variety of interesting aspects. The presence of

self-reinforcing mechanisms in the aggregate dynamics allows for the existence of nontrivial multiple

equilibria. In the economy, there are two sources of instability deriving from the feedback effects

between real and financial markets via Tobin’s q (as in Blanchard’s 1981 seminal model) and from the

endogenous aggregate sentiment dynamics produced by the interaction of heterogeneous agents in the

stock markets. We prove that the dynamical system describing the evolution of the economy always has

either a single steady state (with uniformly distributed agents) or three steady states (the equilibrium

with uniformly distributed agents, one with a dominance of chartists and one where fundamentalists

dominate), but even though various subdynamics of the model can be stable (at either the uniform or

the fundamentalist of the three steady states), the complete system may be repelling around all of its

equilibria. Given the complexity of the 4D nonlinear system, we use numerical simulations to explore

the properties of the economy. Our results show that the dynamical system describing the economy

is generally bounded: all trajectories remain in an economically meaningful subset of the state space.

In this sense, unfettered markets with possibly accelerating real-financial feedback mechanisms may

have some in-built stabilizing mechanism (based on aggregate sentiment dynamics) that prevent the

economy from moving along an infeasible path. Nonetheless, real-financial interactions and sentiment

dynamics do amplify exogenous shocks and may generate persistent fluctuations and the associated

welfare losses. Indeed, despite the relatively simple behavior of the subsystem describing the evolution

1Indeed, the central equation of the WHL approach which describes the dynamics of population shares might be
provided from game theoretic foundations along the lines of Brock and Durlauf (2001), Blume and Durlauf (2003) and
He et al. (2016). We are grateful to Tony He for pointing this link out to us.
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of output without heterogeneous beliefs, the dynamics of the complete system can exhibit somewhat

irregular fluctuations.

Finally, it is worth stressing that, unlike in most of the current macroeconomic literature, our model

is based on a dynamic disequilibrium approach in which the evolution of the variables over time is

described by gradual adjustment processes, and no equilibrium condition is imposed a priori. This

dynamic disequilibrium approach – discussed in detail in Chiarella and Flaschel (2000) and Chiarella

et al. (2005) – seems like a natural complement to the behavioral WHL approach to expectation

formation, see also Chiarella et al. (2009).

The remainder of the paper is organized as follows. In section 2 we lay out the macroeconomic

framework. Section 3 derives the main analytical results concerning the dynamics of the economy.

Section 4 illustrates the properties of the model by means of numerical simulations. Section 5 analyzes

some policy measures. Section 6 concludes, and the proofs of all Propositions are in the Appendix.

2 The Model

2.1 Core Real-Financial Interactions

We consider a closed economy consisting of households, firms and a monetary authority. We assume

that households are the sole owners of the firms’ stocks or equities E which represent claims on the

firms’ physical capital stock K.

Unlike in Chiarella and Flaschel (2000) and Chiarella et al. (2005), we abstract from the “Met-

zlerian” inventory accelerator mechanism in the modeling of goods market dynamics2 in order to

focus on the interaction emerging from a stock market driven by aggregate sentiment dynamics and

the macroeconomy. We assume instead that aggregate production evolves according to a dynamic

multiplier specification3

Ẏ = βy(Y d − Y ), (1)

where Y represents aggregate real output, Y d aggregate demand and βy > 0 the speed of adjustment

of output to market disequilibrium as in the seminal paper by Blanchard (1981).

Let pe denote the nominal equity price, and p the nominal price of capital goods. The Brainard

and Tobin (1968) q ratio is then given by

q = peE/pK. (2)

2These potentially destabilizing macroeconomic channels arising from the real side of the economy could be however
reincorporated in the present framework in a straightforward manner.

3For any dynamic variable z, ż denotes its time derivative, ẑ its growth rate and zo its steady state value.
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Without loss of generality, we normalize the price of output to one, p = 1, and assume further that

the horizon of our analysis is sufficiently short as to guarantee that both E and K are constant

magnitudes. We normalize K assuming K = 1. As a result, changes in q are determined solely by

changes in pe. Further, we assume that financial markets dynamics affect the real economy via the

impact of Tobin’s q on aggregate demand. Hence, aggregate demand is given by:

Y d = ayY +A+ aq(pe − peo)E, (3)

where ay ∈ (0, 1) is the propensity to spend, A is autonomous expenditure, and aq > 0 measures the

responsiveness of output demand to the difference between the actual value of real stocks and their

steady state value peo. Inserting equation (3) into equation (1) yields

Ẏ = βy[(ay − 1)Y + aq(pe − peo)E +A]. (4)

Since in our economy profits are assumed to be entirely redistributed to firms’ owners (households)

as dividends, the expected real return on equity ρee is

ρee =
bY

peE
+ πee . (5)

where b ≥ 0 is the profit share, bY/(peE) is the dividend rate, and πee represents the average, or market

expectation of future capital gains πe = ṗe/pe, i.e., the growth rate of equity prices.

Finally, we assume that the equity market is imperfect due to information asymmetries, adjustment

costs, and/or institutional restrictions, so that the equity price pe does not move instantaneously to

clear the market.4

More specifically, we assume that

p̂e = βe(ρ
e
e − ρeeo) = βe

(
bY

peE
+ πee − ρeeo

)
, (6)

where βe describes the adjustment speed at which the equity price reacts to discrepancies between the

expected rate of return on equity and its steady state value, ρeeo, which is assumed to be a given and

strictly positive parameter in the model. As we will discuss below, while equation (6) seems rather

stylized at first sight, it actually describes a complex mechanism due to the intrinsic nonlinearity of

the dynamics of the capital gain expectations πee .

4In addition to E, we assume that there are two more financial assets, namely, as is customary, money M and short-
term fix-price bonds B (see Charpe et al. (2011) for an explicit analysis and also for a critique of allowing governments
to issue a perfectly liquid asset B, with a given unit price). For simplicity we assume that the monetary authorities fix
the interest rate on the bonds B at the level r, accommodating the households’ excess demand for money. This allows
us to abstract from the traditional interest rate effect on aggregate output so central in New Neoclassical Consensus
models (see e.g. Woodford, 2003) and focus in isolation on the stock price effects under aggregate sentiment dynamics,
as discussed below.
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2.2 Aggregate Sentiment Dynamics

Based on the empirical findings of Frankel and Froot (1987, 1990) and Allen and Taylor (1990), and

the extensive literature they sparked, we assume that traders in financial markets use various types of

heuristics when forming their expectations about future asset price developments. To be specific, we

assume that traders in the stock market use either a fundamentalist rule (denoted by the superscript

f) according to which they expect capital gains to converge back to their long-run-steady state value

(assumed to be zero), i.e.

π̇e,fe = βπe,fe (0− πee), (7)

or a chartist rule (denoted by c) given by

π̇e,ce = βπe,ce (p̂e − πee), (8)

where βπe,fe and βπe,ce are the speed of adjustment parameters of the two heuristics-based forecasting

rules, respectively.

Suppose that at any given time a share νc ∈ [0, 1] of the population consists of financial market

participants using the chartist rule and a share νf = 1−νc consists of traders using the fundamentalist

rule. The law of motion of aggregate capital gain expectations can then be expressed as

π̇ee = νc(βπe,ce (p̂e − πee)) + (1− νc)(βπe,fe (0− πee))

= νcβπe,ce p̂e − (νcβπe,ce + (1− νc)βπe,fe )πee . (9)

According to this equation the evolution of aggregate, market-wide expectations of future capital gains

is given by the weighted average of the change of the expectations, or forecasts, resulting from the use

of the fundamentalist or chartist forecasting rule. Further, as the interplay between fundamentalists

and chartists is well understood in the literature (see e.g. Hommes, 2006), we assume in the following

that βπe,ce = βπe,fe = βπee for simplicity and in order to focus on other rather new channels which

emerge from the aggregate sentiments dynamics.5 Then, the above equation becomes

π̇ee = βπee (νcp̂e − πee). (10)

Observe that in equations (7) and (8), both fundamentalists and chartists are assumed to use

aggregate expectations πee as the reference value for the updating of their own expectations. This

specification is meant to reflect Keynes’ (1936, p.156) famous view of the stock market as a process of

choosing the most beautiful model in a beauty contest, where the winner is the one who has selected

5Further, by assuming that the two heuristics are updated with the same speed or frequency we are able to focus
on the implications of the use of the different heuristics per se. We think that the latter are more relevant behaviorally
and capture the most relevant part of heterogeneity in the stock market.
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the model who is chosen as the most beautiful by the (relative) majority of players. Winning requires

guessing the views of the other players.

We endogenize the variable νc by adopting the aggregate sentiment dynamics approach by Weidlich

and Haag (1983) and Lux (1995) as recently reformulated in Franke (2012, 2014), which provides

behavioral microfoundations to agents’ attitudes in financial markets. Accordingly, agents decide

whether to take either a chartist, or a fundamentalist stance depending on the current status of the

economy (captured by the key variables Y , pe), on expectations on the evolution of financial gains

(πee), and – crucially – on the current composition of the market (captured by the variable x, defined

below).

Formally, suppose that there are 2N agents in the economy. Of these, Nc use the chartist forecasting

rule and Nf use the fundamentalist rule, so that Nc +Nf = 2N . Following Franke (2012) we describe

the distribution of chartists and fundamentalists in the market by focusing on the difference in the

size of the two groups (normalized by 2N). To be precise, we define

x ≡ Nc −Nf
2N

. (11)

Therefore x ∈ [−1,+1], νc =
Nc
2N

= 1+x
2 and νf =

Nf
2N

= 1−x
2 , and x > 0 indicates a dominance of

chartists, while x < 0 implies a majority of fundamentalists at any given point in time.

Let pf→c be the transition probability that a fundamentalist becomes a chartist, and likewise for

pc→f . The population dynamics represented by the change in x depends on the relative size of each

population multiplied by the relevant transition probability. Given the continuous time setting of the

present framework, we take the limit of ẋ as the population N becomes very large as in Franke (2012),

so that the intrinsic noise from different realizations at the individual level can be neglected. Then:

ẋ = (1− x)pf→c − (1 + x)pc→f . (12)

The key behavioral assumption concerns the determinants of transition probabilities: we suppose

that they are determined by a switching index, s, which captures the expectations of traders on

market performance. An increase in s raises the probability of a fundamentalist becoming a chartist,

and decreases the probability of a chartist becoming a fundamentalist. More precisely, assuming that

the relative changes of pc→f and pf→c in response to changes in s are linear and symmetric:6

pf→c = βx exp(axs), (13)

pc→f = βx exp(−axs). (14)

6Note that because βx > 0, the transition probabilities are always nonnegative. Furthermore, as shown by Franke
(2012, p.6), we need not bother about the size of the expressions in equations (13) and (14), as the relevant probabilities
will always be lower than one.
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The switching index depends positively on market composition (capturing the herding component

of agents’ behavior) and on economic activity; and negatively on deviation of the market value of the

capital stock and of the average capital gain expectations from their respective steady state values.

As in Franke and Westerhoff (2014), this can be written as:7

s = sxx+ sy(Y − Yo)− spe(pe − peo)2 − sπee (πee)
2. (15)

Deviations of share prices and capital gain expectations from their steady state values tend to

favor fundamentalist behavior as doubts concerning the macroeconomic situation become widespread.

This can be interpreted as a change in the state of confidence, whereby agents believe that increasing

deviations from the steady state eventually become unsustainable.

The economy is described by the 4D dynamical system consisting of equations (4), (6), (10), and

(12), where νc results from equation (11) and pf→c and pc→f are given by equations (13) and (14),

i.e.

Ẏ = βy[(ay − 1)Y + aq(pe − peo)E +A], (16)

ṗe = βe

(
bY

peE
+ πee − ρeeo

)
pe, (17)

π̇ee = βπee

(
1 + x

2
βe

(
bY

peE
+ πee − ρeeo

)
− πee

)
, (18)

ẋ = (1− x)βx exp(axs)− (1 + x)βx exp(−axs). (19)

and s is given by equation (15).

The model provides a simple but general framework to capture some key real-financial interactions,

and the feedback between economic variables and agents’ attitudes and expectations.

3 Local Stability Analysis

Let z = (z1, z2, . . . , zn). For any dynamical system ż = g(z), a steady state is defined as the state in

which ż = 0. Then, it is straightforward to prove the following Lemma:8

7We adopt a quadratic specification only for the sake of simplicity and expositional clarity. All of our results can be
extended to more general switching index functions s = s(x, Y, pe, πee), with s′x > 0, s′y > 0, s′pe < 0, and s′πee

< 0, where

s′i is the derivative of the function s( · ) with respect to i.
8Recall that the steady state value of the expected return on equity, ρeeo, is assumed to be a parameter of the model.

Therefore Lemma 1 can be interpreted as identifying a one-parameter family of steady states.
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Lemma 1 The dynamical system formed by equations (16), (17), (18), and (19) always has the

following steady state solution:

Yo =
A

1− ay
, (20)

peo =
bA

(1− ay)ρeeoE
, (21)

πeeo = 0, (22)

xo = 0. (23)

While Lemma 1 defines the unique steady state values of the variables Y , pe and πee , which will

always exist independently of the steady state values of x, it does not rule out the existence of further

steady states which however may arise solely due to the nonlinearity of the population dynamics. As

discussed below, other steady-states may arise depending on which modeling elements are taken into

account in the analysis.

In the following, we shall analyze the local stability of various subparts of the model separately.

This exercise allows us to understand the sources of instability (and the stabilizing forces) in the

economy before exploring the complete model by means of numerical simulations.

3.1 Core Real-Financial Interactions

We begin by analyzing the interaction between the macroeconomy and the stock market under the

assumption of constant capital gains expectations πee = π̄ee = 0. This assumption reduces our macroe-

conomic model to a 2D core system formed by equations (16) and (17).9

Proposition 1 The dynamical system formed by equations (16) and (17) has a unique steady state:

Yo = A
1−ay and peo = bA

(1−ay)ρeeoE
with the following stability conditions:10

(i) if
aqb

1−ay < ρeeo, then the steady state is (asymptotically) stable;

(ii) if
aqb

1−ay > ρeeo, then the steady state is an (unstable) saddle point.

In this model, Tobin’s q plays a key role in breaking down the dichotomy between the real and

financial components of the economy. An increase in pe has a positive effect on the rate of change of

output, but a negative effect on the expected return on equity. Similarly, real markets influence asset

markets via the role of output as the main determinant of the rate of profit of firms, and thus of the

9The proofs of all Propositions can be found in Appendix A.
10Given that this dynamical subsystem is linear, local stability implies also global stability.
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rate of return on real capital. A higher output level has a positive effect on p̂e, but a negative effect

on the rate of change of output.11

Proposition 1 concerns the interaction of real and financial adjustment processes and does not

depend on the presence of capital gain expectations, which are introduced next.

3.2 Real-Financial Interactions with Constant Heterogeneous Beliefs

As a next step, we introduce heterogeneous expectations in the basic 2D macroeconomic model while

assuming agents’ attitudes, and thus νc, to be exogenously given. This allows us to analyze the

effect of expectations on the dynamics of real financial interactions. Not surprisingly, introducing

heterogeneity in agents’ expectations, may play a destabilizing role in the economy.

The next Proposition characterizes the dynamics of the 3D model when βe < 1.

Proposition 2 Consider the dynamical system formed by equations (16), (17) and (18) and let βe <

1. For any νc ∈ [0, 1], at the steady state given by equations (20)-(22):

(i) if aqb/(1− ay) < ρeeo then the system is locally (asymptotically) stable,

(ii) if aqb/(1− ay) > ρeeo then the system is unstable.

Observe that Proposition 2 holds for any νc ∈ [0, 1], and so it provides some important insights

on the dynamics of the system formed by equations (16), (17) and (18). Interestingly, as in the 2D

system, the stability of the steady state depends on the relation between aq, b/(1 − ay) and ρeeo. In

the case where βe < 1 the introduction of heterogeneous expectations (chartist and fundamentalist)

changes neither the number of steady states, nor their stability properties.

The validity of Proposition 2 (the irrelevance of the exogenous share of chartists and fundamen-

talists in the markets for the stability of the system) depends of course on βe < 1. The following

Proposition applies for the case where βe > 1:

Proposition 3 Consider the dynamical system formed by equations (16), (17) and (18). Further, let

ν∗c =
βy(1− ay) + βeρ

e
eo + βπee

βπeeβe
=
βy(1− ay)

βπeeβe
+
ρeeo
βπee

+
1

βe
.

11It is also interesting to consider briefly the dynamics of the model under perfect foresight i.e. πee = p̂e, see e.g.
Turnovsky (1995). In this case, the population dynamics and a separate law of motion for share price expectations are
redundant, and the law of motion of share prices is:

p̂e = βe

(
bY

peE
+ p̂e − ρeeo

)
⇐⇒ p̂e =

βe

1− βe

(
bY

peE
− ρeeo

)
.

It is straightforward to confirm by a standard local stability analysis that if βe < 1, the conditions for local stability of
the steady state are the same as those postulated in Proposition 1.
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Under the assumption that βe > 1, if ν∗c ∈ [0, 1] and νc > ν∗c , then the steady state given by equations

(20)-(22) is unstable.

According to Proposition 3, if βe > 1 and the share of chartists in the market νc is beyond the

endogenously determined threshold value ν∗c , the destabilizing influence of the chartists will lead to

macroeconomic instability, as higher capital gains expectations will lead to higher share prices and

higher output which will in turn translate into higher capital gain expectations. Accordingly, ν∗c

represents an endogenous upper bound on νc above which the system loses stability to exogenous

shocks. Higher values for βπee and/or βe lower ν∗c , making the whole system more prone to overall

instability.

The previous analysis has only described the dynamics of the economy in a neighborhood of the

steady state characterized by equations (20), (21) and (22). The introduction of aggregate sentiments,

and by extension of a varying influence of chartist expectations, is likely to lead to explosive dynam-

ics, for instance if either the speed of adjustment in financial markets βe or the coefficient βπee are

sufficiently high. This explosiveness may be tamed far off the steady state through the activation of

nonlinear policy measures or, as we will discuss below, by intrinsic nonlinear changes in behavior, thus

ensuring that all trajectories remain within an economically meaningful bounded domain.

We will explore the global dynamics of the system with aggregate sentiment dynamics by numerical

simulations in section 4 below. In the next section, we explore the possibility that endogenous changes

in the agents’ populations, νc, reduce the influence of chartists far off the steady state and thereby

create turning points in the evolution of capital gain expectations.

3.3 Real-Financial Interactions with Endogenous Aggregate Sentiments

As previously mentioned, while Lemma 1 characterizes a particular steady state solution that al-

ways exists, other steady states may also exist for particular parameter constellations. The following

proposition focuses on the role of the parameters sx and ax for the emergence of multiple steady

states.

Proposition 4 Consider the dynamical system formed by equations (16)-(19). If sx ≤ 1/ax then the

steady state given by equations (20)-(23) is unique. If sx > 1/ax, then there are two additional steady

state values for xo: one characterized by a dominance of fundamentalists, ef , and one where chartists

dominate, ec.

In other words, multiple equilibria emerge if herding behavior is sufficiently pronounced in the

economy: if the self-reinforcing effect of changes in population dynamics (the combined effect of

changes in the population shares on the switching index, sx, and of the switching index on transition

11



probabilities, ax) is sufficiently strong, then the nonlinearity arising from opinion dynamics in financial

markets yields multiple steady states. The emergence of multiple steady states due to this mechanism

is illustrated in Figure 1, which illustrates the number of steady states of x for different values of ax and

sx. While the steady state is unique if sx ≤ 1/ax, there are multiple steady states if sx > 1/ax. For

example, for sx = 2/ax, there are three steady states: one with a large prevalence of fundamentalists

(x ≈ −1), one with populations of equal size (x = 0), and one with a large prevalence of chartists

(x ≈ 1).

Figure 1: Steady states of population dynamics for different values of ax and sx

Before analyzing the dynamics of the complete system numerically in the next section, it is inter-

esting to consider the properties of the opinion dynamics and the expectations part of the model in

isolation. We thus assume that output and dividend payments are fixed at their steady state values

Yo and peo in the rest of this section. By inserting equations (20) and (21) into (18) we get

π̇ee = βπee

[
βe

1 + x

2
− 1

]
πee , (24)

and from equation (15),

s = sxx− sπee (πee)
2. (25)

Inserting this expression in equation (19) yields

ẋ = βx
[
(1− x) exp(ax(sxx− sπee (πee)

2))− (1 + x) exp(−ax(sxx− sπee (π
e
e)

2))
]
. (26)

A quick glance at equation (24) makes clear that the condition π̇ee = 0 can be fulfilled either when

πee = 0, or when πee 6= 0. This means that the multiplicity of steady states arises here not only through

the nonlinear equation (26), as discussed in Proposition 4, but also through equation (24). The next

two Propositions deal with the case with πeeo = 0.

12



Proposition 5 Consider the dynamical system formed by equations (24) and (26). Then:

(i) if sx ∈ (0, 1/ax), eo = (πeeo, xo) = (0, 0) is the only steady state with πeeo = 0;

(ii) if sx > 1/ax, then two additional steady states exist, ef = (0, xfo ) and ec = (0, xco) with xfo < 0

and xco > 0, respectively.

In other words, if the aggregate sentiment dynamics display a strong self-reinforcing behavior,

multiple equilibria emerge in which either fundamentalists or chartists dominate. The next Proposition

describes some stability properties of the steady states identified in Proposition 5.

Proposition 6 Consider the dynamical system formed by equations (24) and (26). Then:

(i) Let sx ∈ (0, 1/ax). If βe > 2, then eo = (πeeo, xo) = (0, 0) is an unstable saddle point. If βe < 2,

then eo is locally asymptotically stable.

(ii) Let sx > 1/ax. The steady state eo = (0, 0) is unstable. The steady states ec = (0, xco) and

ef = (0, xfo ) are locally asymptotically stable if and only if (1 + xco)βe < 2 and (1 + xfo )βe < 2,

respectively.

By Proposition 6, it follows that sentiment dynamics may lead to local instability. This raises

the issue of the global viability of the dynamical system formed by equations (24) and (26). It is

difficult to draw any definite analytical conclusions on this issue and we shall analyze it in detail

by means of numerical methods in the next section. To be sure, opinion dynamics do incorporate

a stabilizing mechanism far off the steady state(s), as x always points inwards at the border of the

x−domain [−1, 1]. Yet the global viability of the system will ultimately depend on the properties of

the interaction between market expectations and opinion dynamics.

Consider, for example, case (i) of Proposition 6 and suppose that βe > 2, so that eo = (0, 0)

is unstable. It can be shown that there must be an upper and a lower turning point for πee in the

economically relevant phase space [−1, 1]× [−∞,+∞]. For suppose, by way of contradiction, that πee

tends to infinity. By equation (26) it follows that ẋ becomes negative and approaches −∞. But then as

x approaches −1, by equation (24) it follows that π̇ee becomes negative, which contradicts the starting

assumption. A similar argument rules out the possibility that πee becomes infinitely negative and

therefore there must always be an upper or lower turning point for capital gain inflation or deflation.

This implies that all trajectories stay within a compact subset of the phase space and the interaction

between expectation dynamics and herding mechanism would thus be bounded, if taken by itself.12

12Given the instability of the steady state, this suggests the existence of a limit cycle.
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It is also worth noting that the dynamical system formed by equations (24) and (26) features two

additional steady states for the case where πeeo 6= 0, e+ = (π+
eo, x

+
o ) and e− = (π−eo, x

−
o ), with

xo =
2

βe
− 1, and πeeo = ±

√√√√sx

(
2
βe
− 1
)
− ln

(
1

βe−1

)
/2ax

sπee
.

These steady states13 are locally asymptotically stable if

axsx <
1

1− x2o
.

4 Numerical Simulations

This section examines the properties of the model using numerical simulations.14 We first illustrate

the effects of capital gain expectations on the dynamics of Tobin’s q using the 3D model comprising

the output equation (16), the share price equation (17) and the capital gains equation (18) and then,

in a second step, investigate the complete 4D dynamical system including the endogenous dynamics

of aggregate sentiments.

Table 1: Baseline Parameter Calibration of the 2D model

Autonomous spending A 0.128
Profit share b 0.35
Elasticity of aggregate demand to income ay 0.8
Elasticity of aggregate demand to Tobin’s q aq 0.05
Adjustment speed of Tobin’s q βe 2
Adjustment speed of output βy 2
Parameter in population dynamics ax 0.8
Steady state capital stock Ko 1
Steady state equity stock Eo 1
Steady state population xo 0
Steady state expectations πeeo 0
Steady state expected capital return ρeeo 0.14
Steady state output capital ratio Yo

Ko
0.64

Steady state share price peo 1.6

The calibration of the 2D model is shown in Table 1. The profit share b is set at 0.35, in line with

the long term average in Karabarbounis and Neiman (2014). Based on Bloomberg data from 2000 to

2013, the return on equity (adjusted for R&D spending) is on average 14 percent in the United States,

so we set ρeeo = 0.14. Brooks and Ueda (2011) argue that Tobin’s q has been fluctuating between

13For these steady states to be economically meaningful the following conditions must hold: xo =
[

2
βe
− 1
]
∈ [−1, 1]

and 2axsx
(

2
βe
− 1
)
≥ ln

(
1

βe−1

)
.

14The numerical simulation are performed using the SND package (Chiarella et al., 2002).
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1.4 and 1.7 over the period 1990 to 2013. We set its steady state value within this range at 1.6. It

follows that the steady state output capital ratio is Yo
Ko

is 0.64. Mukherjee and Bhattacharya (2010)

estimate that, in 18 OECD countries, the propensity to spend out of income fluctuates between 0.6

and 1.2. We set ay equal to 0.8. Therefore by equation (20) the autonomous spending component

A = Yo(1− ay) equals 0.128.

The elasticity of aggregate demand to Tobin’s q, aq, is set equal to 0.05. The dynamic output

multiplier, βy, and the speed of adjustment of Tobin’s q, βe, are both set equal to 2. Unless otherwise

stated, the experiment considered in this section is a 1 percent shock on output with no auto-regressive

component. All diagrams reporting simulation results display the deviation of variables from their

steady state value in percent, unless otherwise stated.

Figure 2 illustrates the dynamic adjustments of the 3D model consisting of the output equation

(16), the share price equation (17) and the capital gains expectations equation (18) for βπee = 0,

βπee = 0.2 and βπee = 4.15 In all cases, the parameter aq is small enough (0.05) to ensure that the

determinant is positive, and νc = 0.5, which corresponds to νc = 1+x
2 with xo = 0 in line with the 4D

model calibration presented below.

If βπee = 0 the dynamics of the system is rather simple: the positive shock on output is followed

by an increase in share price pe as the expected return on the capital stock ρee rises. The dynamics

of pe is hump-shaped as the increase in the share price is modest at the beginning and does not

immediately reduce the return on capital. When the equity price rises enough to lower the return on

equity, the economy converges back to its steady state. If βπee = 0.2 the model displays an oscillatory

behavior after the aggregate demand shock due to the activated feedback channel between πee and

pe, as capital gains expectations amplify both the increase in the price of equity initiated by a higher

return on capital and the decline in the price of equity when the rate of return diminishes due to a fall

in the price of equities. As the share price pe undershoots its steady state value it generates further

oscillations in aggregate output. These fluctuations are not, however, self-sustaining and the economy

returns to the steady state.

The dashed red line in Figure 2 corresponds to the case where the speed of adjustment in capital

gains expectations βπee is increased from 0.2 to 4 with aq = 0.05, which implies that the stability

conditions in Proposition 2 continue to hold. As the (negative) trace of the corresponding Jacobian

matrix declines with βπee , the model is stable but displays oscillations around the trajectory converging

back to the steady state. As shown by the solid blue line in the second row, second column graph,

the maximum real part of the eigenvalues is always negative for all values of the speed of adjustment

of expectations, βπee . Raising βπee increases the amplitude of the fluctuations of the expectations but

βπee has a stabilizing effect on output. Adaptive expectations are inherently stable given the influence

of the equity price on the real return on equity. In contrast, the graphs in the third row of Figure 2

15It is worth noting that the simulations based on βπee = 0 represent the dynamics of the 2D model and are thus
related to the analytical stability conditions described in Proposition 1.
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Figure 2: Dynamic responses following a positive one-percent output shock and maximum eigenvalues
for the 3D model (Y, pe, π

e
e).

highlight the importance of the parameter νc for the stability of the 3D model (Y, pe, π
e
e) as discussed

in Proposition 3. In the left panel of the third row, the maximum real part of the eigenvalues turns

positive for values of νc strictly larger than 0.56. Increasing the value of νc at 0.56 while keeping

βπee = 4 produces self-sustaining oscillations of the model, as shown in the right panel of this figure.16

Figure 3 illustrates the case of multiple steady states described at the end of section 3 for the

subsystem (πee , x) where the steady state for expectations and population are different from zero. In

the upper two panels we set βe = 1.15, sx = 1.5 and ax = 1 (so that sx > 1/ax), which implies

xo = 2
βe
− 1 = 0.74 and πeeo = 0.57. Following a positive shock on the population variable x, the

population dynamics fluctuates around its steady state value following dampening oscillations. In this

case, the prevalence of chartist expectations (as xo = 0.74 > 0) does not lead to explosive dynamics

due to the relatively slow adjustment in the price of shares. On the contrary, as illustrated in the

two lower panels in Figure 3, increasing the speed at which the price of shares adjusts, βe = 1.5,

makes the steady state e+ = (π+
eo, x

+
o ) locally unstable. Following the shock, the population features

16Given the parametrization of the model, while the value of ν∗c is 0.585, the cut-off value for instability is 0.5635.
These values corroborate Proposition 3 as identifying a sufficient condition for local instability.
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Figure 3: Dynamic response for the 2D model (πee , x) following a positive shock on the population
dynamics in the multiple (non-zero) steady state case.

an explosive oscillatory dynamic response until the excess volatility in the financial markets leads

agents to switch towards fundamentalist expectations. The economy then converges towards a stable

equilibrium dominated by fundamentalists where capital gains expectations are zero.

The next simulation in Figure 4 considers the influence of the aggregate sentiment dynamics on

the price of capital and the financial multiplier by setting βx = 0.75. The choice of ax = 0.8 and

sx = 0.8 corresponds to the case of a unique steady state with xo = 0 for the relative population of

fundamentalists and chartists. We now set sy = 20 in order to incorporate the impact of real economic

activity on the aggregate sentiments of the agents. As a first step, we focus on a linear version of the

opinion switching index abstracting from the influence of price and capital gains volatility by setting

spe = sπee = 0 (we analyze the general case with spe 6= 0 and sπee 6= 0 in Figure 7 below). The rest of

the parameters are similar to those of the dashed green line in Figure 2 (βπee = 4). Figure 4 compares

the 3D model just discussed (solid blue line) with the 4D model (green line).

As Figure 4 clearly shows, the addition of the population dynamics generates larger fluctuations

in output and equity prices. Following a positive output shock, the increase in chartist population

further raises capital gain expectations, which further increases the expected returns on equity and

the demand for equity. The dashed-dotted red line corresponds to the 4D model where the self-

reference parameter sx in the aggregate sentiment index is increased from 0.8 to 1. This value of sx

still generates a unique steady state (xo = 0) of the population variable. But the population dynamics

17



0 10 20 30 40 50 60

ou
tp

ut

-0.5

0

0.5

0 10 20 30 40 50 60

sh
ar

e 
pr

ic
e

-8

-4

0

4

0 10 20 30 40 50 60

ex
pe

ct
at

io
ns

-2

-1

0

1 -x=0

-x=0.75; sx=0.8

-x=0.75; sx=1

0 10 20 30 40 50 60

po
pu

la
tio

n

-0.2

0

0.2

-
e

0 0.5 1 1.5 2 2.5 3

ei
ge

nv
al

ue
s

-0.5

0

0.5

1

sx=1

s
x

0 0.5 1 1.5

ei
ge

nv
al

ue
s

-0.2

0

0.2

0.4 -x=0.75

Figure 4: Dynamic adjustments to a one percent output shock in the 3D model (Y, pe, π
e
e) and the 4D

model (Y, pe, π
e
e , x) (first two rows) and maximum eigenvalue diagrams (last row)

now exhibits larger fluctuations between -0.2 and 0.3. These larger fluctuations translate into wider

oscillations in capital gains expectations, share prices, and economic activity, with the reversal of

expectations towards fundamentalism generating a decline in output by 6 percent.

Given that the stability conditions cannot be derived analytically for the 4D model, the interpreta-

tion of the numerical simulations is indicative only. In order to interpret them recall that Proposition 6

stated that the 2D model formed by equations (24) and (26) has a unique steady state if sx ∈ (0, 1/ax)

and is stable if βe < 2. Similarly, as shown in section 3.2 above, the value of βe affects the stability

of the 3D dynamical system formed by equations (16)-(18). This suggests that the parameter βe may

play a key role in determining the stability properties of the whole system. The left figure of the third

panel in Figure 4 confirms this intuition: it plots the maximum real part of the eigenvalues of the

system around the steady state with xo = 0 with respect to different values of βe. The maximum

real part of the eigenvalues turns positive for βe larger than 2.3, indicating that the 4D model loses

stability for large values of βe. Comparably, the right panel of the third row displays the maximum

real part of the eigenvalues of the system around the steady state with xo = 0 for sx varying between

0 and 1.5. In line with the previous simulation, the system is stable when sx is smaller than 1.25.

The system of equations has a unique steady state towards which the economy converges.
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Figure 5: Dynamic adjustments to a negative one percent output shock in the 4D model.

Next we analyze the dynamics of the 4D model assuming spe = sπee = 0 with sx = 1.5. Given

ax = 0.8, these parameter values lead to the existence of three steady states, as discussed in Proposition

4. In this case, a negative shock on output steers the population dynamics towards a steady state

dominated by fundamentalists at xo = −0.65 as illustrated in Figure 5. Given the parametrization

of this simulation, output and share prices converge back to their corresponding steady states in a

monotonic manner.

While the aggregate sentiment dynamics tends to amplify financial instability in the proximity of

the steady state, the non-linearity embedded in the population dynamics generates forces that keep the

aggregate fluctuations within viable boundaries. Figure 6 illustrates how global stability is generated

by the sentiment dynamics. The solid blue line corresponds to the 3D model presented in Figure 2

with the parameter aq (which represents the sensitivity of output to Tobin’s q) increased from 0.05 to

0.081. For a value of aq = 0.081, the 3D model is unstable as illustrated by the monotonically explosive

trajectory of output and of the price of equities in the top row, and of the capital gain expectations in

the left panel in the second row.17 The instability is located in the financial sector and arises because

of a positive feedback between the rate of return on equity, the price of equity, and its accelerator effect

on the real economy. The dashed line corresponds to the case where the 3D model is augmented by

aggregate sentiment dynamics with βx = 0.75, sx = 0.8, sy = 12.5 and spe = sπee = 0. The economy

does not display an explosive behavior now, being characterized instead by bounded cycles with high

frequency oscillations taking place around lower frequency fluctuations. The non-linearity embedded

in the sentiment dynamics sets an upper and a lower bound to the amplitude of the cycles. The lower

two panels plot the bifurcation diagrams for output and the relative size of the two populations for

17The scale of the graph gives the impression that πee returns to its initial steady state value, but in fact it diverges,
too, albeit very slowly.
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Figure 6: Explosive dynamics in the 3D model (Y, pe, π
e
e) versus bounded dynamics in the 4D model
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e
e , x).

aq ∈ [0.07; 0.084]. The diagram shows the Hopf bifurcation for aq = 0.08, beyond which the model

displays oscillations.

As already mentioned, the simulations of the 4D model shown in Figures 4 through 6 have all

considered a linear version of the sentiment switching index with spe and sπee equal to zero in equation

(15). In Figure 7, we consider the case where the opinion switching index depends negatively on

the volatility of capital gain expectations and of the share price. As the graphs in Figure 7 show,

the activation of these nonlinear terms does modify the dynamics of the model. When the sentiment

switching index also depends on these two volatility terms, there is a coordination in the expectations of

financial market agents towards fundamentalism. We illustrate this emergent feature by the following

two examples.

The first example corresponds to the case where βe = 0.75 and sx = 1 and is illustrated in the

upper panels of Figure 7. Therein the blue line corresponds to the 4D model of Figure 4 with a linear

switching index specification (spe = sπee = 0), while the green line corresponds to the case where the

switching index contains also nonlinear terms (spe = sπee = 20), both with βe = 0.75 and sx = 1. As

it can be clearly observed, the extent of the dynamic reaction of the full nonlinear 4D model following
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Figure 7: Dynamic adjustments of output and population shares in the full 4D model (Y, pe, π
e
e , x) for

different values of spe and sπee for the dynamically stable case (upper panels) and the explosive case
(lower panels).

a positive output shock is smaller than the reaction of the 4D model with a linear switching index, as

the volatility in share price and capital gain expectations reduces the fluctuations in the population

dynamics.

The second example corresponds to the dynamically explosive case discussed for the 3D model

in Figure 6 and is illustrated in the lower panels of Figure 7. Therein, the blue line corresponds

to Figure 6 where the nonlinearity in the population dynamic stabilizes an otherwise explosive 3D

model. More precisely, what characterized the dynamics of the 4D model shown in Figure 6 was that

fluctuations took place along both high and low frequencies. Adding a second type of nonlinearity in

the 4D model via the volatility terms in the sentiment switching index seems to reduce in particular

the amplitude of the low frequency population fluctuations.18

18Appendix B contains additional simulations illustrating the properties of the full model highlighting in particular
the possibility of complex dynamics and performing various robustness checks by means of bifurcation diagrams.
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5 Financial Taxation and Unconventional Monetary Policies

The previous numerical analysis showed the ambivalent effects of the interaction between capital gains

expectations and the composition of the population of financial agents on the stability of our model

economy. In this section, we briefly outline some policies that could stabilize both real and financial

markets. Two policy proposals immediately come to mind, in the light of the current financial crisis

and the measures adopted to tackle it.

Given the economic debate of the last years about a renewed regulation of international financial

markets, it is natural to consider the impact of a tax on capital gains. Taxing finance either via a

“Tobin Tax” or by increasing the marginal tax rate on capital is often suggested by policy makers as

a way of curbing financial market instability, see e.g. Admati and Hellwig (2013). A second policy

focuses on the ability of the Central Bank to reduce the pro-cyclicality of the sentiment switching

index by convincing agents that it will act vigorously to prevent bubbles in financial markets. Indeed,

as central banks greatly influence financial markets sentiments beyond the conventional interest rate

policy via their communication policies, the ability of a central banker to coordinate financial traders’

expectations on a stable equilibrium may be crucial in times of financial distress, see e.g. Siklos and

Sturm (2013).

In Figure 8, the first two policies are assessed with respect to the dashed-dotted red line which

corresponds to the green line in the top row of Figure 7 generated with βx = 0.75 and sx = 1. Further,

we assume spe = sπee = 20 as in Figure 7 of the previous section. In the following we thus simulate

the impact of various policies in the full 4D model. Taxing capital gains is taken into account by

introducing the tax rate τpe in the equation for capital gain expectations (equation (18)).

π̇ee = βπee

[
(1− τpe)

(
1 + x

2

)
p̂e − πee

]
. (27)

The dynamics illustrated by the continuous blue line was generated assuming a tax rate of 20%.

As it can be clearly observed, taxing capital gains has a strong impact on the output dynamics as it

almost entirely smooths out output fluctuations, and it also reduces the amplitude of the fluctuations

in expectations. A side effect is that the sentiment dynamics now follows a humped-shaped trajectory,

rather than an oscillating pattern. As a result, the fluctuations in share prices are much more limited

than in the case illustrated in the top row of Figure 7.19

The dashed green lines describe the dynamics of the 4D model under a successful central bank

communication policy which modifies the perceptions of financial market participants. We specify

19Actually, the tax τpe is not restricted to apply to actual transactions and is imposed on both actual and notional
capital gains. Therefore, rather than a Tobin tax, it may be more appropriately interpreted as a wealth tax of the kind
advocated by Piketty (2014). It is therefore quite interesting to note that, in addition to any redistributive effects, such
a wealth tax may also help to mitigate business cycles and financial turbulence. We are grateful to Bruce Greenwald
for pointing this out to us.
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Figure 8: Dynamics under capital gains taxation and central bank communication policy in the full
4D model (Y, pe, π

e
e , x).

this scenario in our stylized framework by a reduction of the sentiment index parameter sy from 20 to

10. This type of policy has a direct impact on the volatility of financial markets and the real sector,

and the reduction in sy translates into a sharp reduction in output fluctuations.

6 Conclusions

We have studied in this paper a stylized dynamic macroeconomic model of real-financial market

interactions with endogenous aggregate sentiment dynamics and heterogenous expectations in the

tradition of the Weidlich-Haag-Lux approach as recently reformulated by Franke (2012). Following

Blanchard (1981), we focused on the impact of equity prices on macroeconomic activity through the

Brainard-Tobin q, leaving the nominal interest rate fixed for the sake of simplicity, and also because

goods prices were assumed to be constant.

Using this extremely stylized but – due to the intrinsic nonlinear nature of the Weidlich-Haag-Lux

approach – complex theoretical framework, we showed that the interaction between real and financial

markets need not be necessarily stable, and might well be characterized by multiple equilibria (and even

complex dynamics, see Appendix B below). The crucial theoretical, empirical, and policy question,

then, is whether unregulated market economies contain some mechanisms ensuring the stability or
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global boundedness of the economy, or whether centrifugal forces may prevail, making some equilibria

locally unstable and, potentially, the whole system globally unstable.

Our numerical simulations show that global stability can obtain if, far off the steady state, aggregate

sentiment dynamics favor fundamentalist behavior during booms and busts which ensures that there

are upper and lower turning points. Yet, both the local analysis and the simulations suggest that

market economies can be plagued by severe business fluctuations and recurrent crises. We showed

that two policy measures often advocated in the Keynesian literature, namely Tobin-type taxes (here

on capital gains), and Central Bank intervention, can mitigate these problems.

Our theoretical framework can be extended in a variety of directions. First, through the incorpo-

ration of a varying goods price level and an active conventional interest rate policy, the interaction

between macroprudential and conventional policies could be investigated. Also, given the central role

of aggregate sentiments and bounded rationality, we may use the model to investigate the efficiency of

these policies near or at the zero-lower bound of interest rates. Finally, we could analyze the dynamics

of the model under alternative heuristics than the traditional chartist and fundamentalist rules. We

intend to pursue some of these alternatives in future research.
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Appendix A

For any matrix J , let tr(J) be the trace of J and let |J | be its determinant.

Proof of Proposition 1

At a steady state, the Jacobian matrix J of equations (16) and (17) is:

J =

 −βy(1− ay) βyaqE
βeb
E −βeρeeo

 .

It is easy to see that tr(J) < 0. Furthermore, the determinant of J is

|J | = βy(1− ay)βeρ
e
eo −

βyaqEβeb

E
.

Therefore |J | > 0 if and only if

(1− ay)ρeeo > aqb.

Thus, |J | > 0 if and only if

ρeeo >
aqb

1− ay
. (Q.E.D.)

Proof of Proposition 2

For any νc ∈ [0, 1], at the steady state given by equations (20)-(22), the Jacobian of the 3D system

formed of equations (16), (17) and (18) is

J =



−βy(1− ay) βyaqE 0

βeb
E −βeρeeo βepeo

βπeeβeνcb

peoE
−βπeeβeνcρ

e
eo

peo
βπee (νcβe − 1)


. (28)

According to the Routh-Hurwitz theorem, the necessary and sufficient conditions for stability of

the system are:

(C1) tr (J) < 0;

(C2) J1 + J2 + J3 > 0, where Ji represents the principal minor of order i of the matrix J ;

(C3) |J | < 0; and
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(C4) B = −tr (J) (J1 + J2 + J3) + |J | > 0.

Condition (C1) clearly holds. If aq < (1 − ay)ρeeo, then (C2) and, since it can be proved that

|J | = −βπeeJ3, (C3) also hold. As for (C4):

−tr(J) (J1 + J2 + J3) =
(
βy(1− ay) + βeρ

e
eo + βπee (νcβe − 1)

)
·
(
βeρ

e
eoβπee − βy(1− ay)βπee (νcβe − 1) + βy(1− ay)βeρ

e
eo − βyaqβeb

)
,

and

|J | = −βπee

(
βy(1− ay)βeρ

e
eo −

βyaqEoβeb

Eo

)
.

Therefore, simplifying terms, B > 0 if and only if

[
βy (1 − ay) + βeρ

e
eo − βπee (νcβe − 1)

] {
βeβπeeρ

e
eo − βy (1 − ay) (νcβe − 1) + βyβe [(1 − ay) ρeeo − aqb]

}
+βeβπeeβy [aqb− (1 − ay) ρeeo] > 0

or, equivalently, after some straightforward algebra,

[βy (1 − ay) + βeρ
e
eo]

{
βeβπeeρ

e
eo + βy (1 − ay) (1 − νcβe) + βyβe [(1 − ay) ρeeo − aqb]

}
+ βπee (1 − νcβe)

·
[
βeβπeeρ

e
eo + βy (1 − ay) (1 − νcβe)

]
+ νcβeβeβπeeβyaqb− νcβeβeβπeeβy (1 − ay) ρeeo > 0

Note that if 1 > βe and (1− ay) ρeeo > aqb then all terms in the previous expression except for the

last one are strictly positive. Then in order to prove that the desired inequality holds it suffices to

note that

βy (1− ay)βeβπeeρ
e
eo − νcβeβeβπeeβy (1− ay) ρeeo = βy (1− ay)βeβπeeρ

e
eo (1− νcβe) > 0. (Q.E.D.)

Proof of Proposition 3

Since condition (C1) does not hold for νc >
βy(1−ay)+βeρeeo+βπee

βπeeβe
, the steady state of the 3D system is

locally unstable. (Q.E.D.)

Proof of Proposition 4

Note that the steady state values of Y , pe and πe are uniquely determined independently of x by

conditions (20)-(22) in Lemma 1. Given this, we focus on equation (19) where the probabilities and

switching index are given by equations (13), (14) and (15), respectively. Let Y , pe and πe be equal to

their steady state values so that s = sxx.
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Define then the following real valued function g : (−1,+1)→ <

g(x) := sxx−
1

2ax
[ln(1 + x)− ln(1− x)] (29)

This function has the property that g(x) = 0 if and only if ẋ = 0 as can be seen from (19) setting

ẋ = 0 and taking the logs. The equation g(x) = 0 always has a solution for x = 0 and thus there is

always a steady state with xo = 0.

(i) Observe that

lim
x→1

g(x) = −∞, (30)

lim
x→−1

g(x) = +∞, (31)

and the derivative of g(x) is

g′(x) = sx −
1

ax(1− x2)
. (32)

Then if sx ≤ 1
ax

, g′(x) < 0 and g(x) is strictly decreasing for all x ∈ (−1, 1). So, if sx ∈ (0, 1/ax],

xo = 0 is the only value of x such that g(x) = 0 and so ẋ = 0.

(ii) By equation (32), g(x) is increasing if and only if

g′(x) = sx −
1

ax(1− x2)
≥ 0⇔ x2 ≤ sxax − 1

sxax
.

Because sxax > 1, it follows that g(x) is strictly increasing for x ∈
(
−
√

sxax−1
sxax

,
√

sxax−1
sxax

)
and

strictly decreasing for x ∈
(
−1,−

√
sxax−1
sxax

)
∪
(√

sxax−1
sxax

, 1
)

. Then, noting that g(0) = 0 and

g′(0) > 0, by equations (30) and (31), and the continuity of g(x), there exist three steady states:

one with equal populations (xo = 0), one where fundamentalists dominate (xo < 0) and one

where chartists dominate (xo > 0). (Q.E.D.)

Proof of Proposition 5

The proof of Proposition 5 is a trivial modification of the proof of Proposition 4. (Q.E.D.)

Proof of Proposition 6

At any steady state (xo, π
e
eo) with πeeo = 0, the Jacobian of the system formed by equations (24)-(26)

is:

J =

 βπee
[
1+xo

2 βe − 1
]

0

0 2βx exp(axsxxo)
[
(1− xo)axsx − 1

1+xo

]  . (33)
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(i) At the steady state with xo = 0 and πeeo = 0, the Jacobian becomes

J =

 βπee

(
βe
2 − 1

)
0

0 2βx(axsx − 1)

 . (34)

Because sx ∈ (0, 1/ax), if βe > 2 then |J | < 0, and the steady state is an unstable saddle point.

Conversely, if βe < 2 then trJ < 0 and |J | > 0, and the steady state is stable.

(ii) The stability properties of the steady state with xo = 0 and πeeo = 0 can be derived with a

straightforward modification of the argument in part (i) noting that sx > 1/ax.

In order to derive the stability properties of ef = (0, xfo ) and ec = (0, xco), note that J22 Q 0 if

and only if (1− xo)axsx Q 1
1+xo

or equivalently

x2o R
axsx − 1

axsx
. (35)

By the argument in part (ii) of Proposition 3, it follows that both at ec and at ef , x2o >
axsx−1
axsx

and therefore J22 < 0. (Q.E.D.)

Appendix B

In this appendix we present some additional simulations of the full model as well as bifurcation

diagrams. Figure 9 illustrates the case where the relative population variable displays irregular yet

persistent fluctuations. In this simulation, the adjustment speed of share price βe is increased from

2 to 2.5, while the sensitivity of the sentiment switching index to the output gap, sy, is reduced to

0.1. The fast adjustment of share price is a source of instability, which is counter-balanced by the

nonlinearity in the opinion switching index (spe = 0.06 and sπee = 0.5). The self-reflection parameter

in the opinion switching index, sx, is kept at 1.

The fluctuations in the population of traders are translated to capital gains expectations and the

real economy. The relative size of the two groups (fundamentalists and chartists) fluctuates between

-0.25 and 0 with oscillations differing in both amplitude and frequency. The stability in the fluctuation

of the sentiment dynamics is related to the two volatility parameters in the switching equation – spe

and sπee – which capture the idea that higher volatility leads agents to become fundamentalists.

We now turn to bifurcation diagrams based on the same calibration as in the lower panels of Figure

9 in order to further illustrate the properties of the full model. The top panel of Figure 10 show the

bifurcation diagrams of population dynamics and output with respect to the sensitivity of the opinion

switching index to the self-reference element, with sx varying between 0.4 and 1.5. For values of sx

between 0 and 0.5 there are four local minima and maxima for x. This number doubles between 0.5

and 0.9. The number of local minima and maxima then goes back to four between 0.9 and 1 and
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Figure 9: Complex dynamics in the 4D model (Y, pe, π
e
e , x).

further reduces to two between 1 and 1.25. Beyond 1.25 there is a unique steady state. A similar

pattern describes the oscillation of output.

As shown in the next two panels, the number of local minima and maxima decreases with ax from

four over the range 0.7-0.8 to two over the range 0.8-1 and one when ax > 1. This result is also

consistent with the analysis in section 3.3.

The third row of Figure 10 shows bifurcation diagrams of the population dynamics with respect to

the sensitivity of the opinion switching index to the output gap, sy, and to capital gains expectations

sπee . Values of sy in the range [0.15; 0.2] and [0.27; 0.32] produce large fluctuations in the opinion

dynamic. The population variable x goes either to -1 or to positive values when sy > 0.34. For values

of sπee < 0.3, the opinion dynamics displays large fluctuations over the range [-0.6;0] in line with the

result that excess volatility favors fundamentalist expectations.

The fourth and fifth rows of Figure 10 summarize additional sensitivity analysis. The population

dynamics is stable for either low or high values of the speed of adjustment of expectations, βπee , and

the speed of adjustment of the price of capital, βe. Interestingly, only a high speed of adjustment of

population dynamics (βx > 0.8) produces stability. Finally, the system produces oscillations when the

sensitivity of aggregate demand to Tobin’s q, aq, is either small or larger than 0.8.
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