

Amtliche Bekanntmachungen

Herausgegeben im Auftrag des Präsidenten der Hochschule Niederrhein

41. Jahrgang

Ausgegeben zu Krefeld und Mönchengladbach am 6. Juli 2016

Nr. 14

Inhalt

Prüfungsordnung für den Zertifikatskurs Statistische Versuchsplanung mit Excel – von den Grundlagen bis zur Validierung an der Hochschule Niederrhein vom 6. Juni 2016

Prüfungsordnung für den Zertifikatskurs Statistische Versuchsplanung mit Excel – von den Grundlagen bis zur Validierung an der Hochschule Niederrhein

Vom (Stand: 06. Juni 2016)

Aufgrund des § 2 Abs. 4 und des § 62 Abs. 4 Satz 2 des Gesetzes über die Hochschulen des Landes Nordrhein-Westfalen (Hochschulgesetz – HG) in der Fassung des Artikels 1 des Hochschulzukunftsgesetzes vom 16. September 2014 (GV. NRW. S. 547) hat der Fachbereichsrat des Fachbereichs Chemie der Hochschule Niederrhein die folgende Prüfungsordnung erlassen:

Inhaltsübersicht *

- § 1 Geltungsbereich der Prüfungsordnung
- § 2 Ziel des Zertifikatskurses
- § 3 Teilnahmevoraussetzungen
- § 4 Kursinhalt, -aufbau und Kreditpunkte
- § 5 Prüfungen
- § 6 Bewertung der Prüfungsleistung
- § 7 Zertifikat
- § 8 Prüfungsausschuss
- § 9 Inkrafttreten

Anlage Modulbeschreibung

-

^{*} Alle Funktionsbezeichnungen gelten für Frauen in der weiblichen Form.

§ 1 Geltungsbereich der Prüfungsordnung

Diese Prüfungsordnung gilt für den Zertifikatskurs "Statistische Versuchsplanung mit Excel – von den Grundlagen bis zur Validierung" am Fachbereich Chemie der Hochschule Niederrhein.

§ 2 Ziel des Zertifikatskurses

Der Zertifikatskurs soll eine Anwendungs- und Handlungskompetenz aufbauen, die ermöglicht, statistische und mathematische Methoden zum Zweck einer optimierten Versuchsplanung und Durchführung in der Berufspraxis anzuwenden.

§ 3 Teilnahmevoraussetzungen

- (1) Voraussetzung für die Teilnahme an dem Zertifikatskurs ist, dass der Bewerber ein Hochschulstudium erfolgreich abgeschlossen oder die erforderliche Eignung im Beruf erworben hat. Die erforderliche Eignung im Beruf ist nachgewiesen, wenn der Bewerber folgende Voraussetzungen erfüllt:
- 1. Abschluss einer nach Berufsbildungsgesetz oder Handwerksordnung oder einer sonstigen nach Bundes- oder Landesrecht geregelten mindestens zweijährigen Berufsausbildung im naturwissenschaftlichen Bereich und
- 2. eine danach erfolgende mindestens dreijährige berufliche Tätigkeit im Sinne des in Nummer 1 erlernten Ausbildungsberufs oder in einem der Ausbildung fachlich entsprechenden Beruf.
- (2) Ferner setzt die Teilnahme an dem Zertifikatskurs den Abschluss eines privatrechtlichen Vertrages mit der Hochschule Niederrhein voraus.

§ 4 Kursinhalt, -aufbau und Kreditpunkte

- (1) Der Kurs ist gegliedert in vier Präsenzphasen und dazwischen liegenden Selbstlernphasen.
- (2) Alles Nähere zum Aufbau und Inhalt des Zertifikatskurses ergibt sich aus der Modulbeschreibung (Anlage).
- (3) Nach erfolgreich bestandener Prüfung gemäß § 5 werden drei Kreditpunkte gemäß dem European Credit Transfer and Accumulation System (ECTS) bescheinigt.

§ 5 Prüfungen

Der Zertifikatskurs schließt mit einer kursbegleitenden unbenoteten Prüfung in Form einer Klausur ab. Durch diese schriftliche Prüfungsleistung soll der Prüfling nachweisen, dass er in begrenzter Zeit und mit beschränkten Hilfsmitteln Probleme aus dem jeweiligen Prüfungsgebiet mit geläufigen Methoden des Faches erkennen und lösen kann. Die Bearbeitungszeit der Klausurarbeit beträgt 90 Minuten. Die Klausurarbeit findet unter Aufsicht statt. Der kursverantwortliche Hochschullehrende legt bis zu Beginn des Kurses die Richtlinien und Bedingungen für die Klausurarbeit für alle Teilnehmer einheitlich und verbindlich fest.

§ 6 Bewertung der Prüfungsleistung

Eine unbenotete Prüfung wird als "bestanden" oder "nicht bestanden" bewertet. "Bestanden" ist die Prüfung, wenn die erbrachte Leistung den Anforderungen genügt oder trotz ihrer Mängel noch genügt. "Nicht bestanden" ist die Prüfung, wenn die erbrachte Leistung den Anforderungen wegen erheblicher Mängel nicht mehr genügt.

§ 7 Zertifikat

- (1) Hat der Teilnehmer die Prüfung gemäß § 5 Abs. 1 bestanden und damit den Zertifikatskurs erfolgreich absolviert, wird ihm hierüber vom Prüfungsausschuss ein Zertifikat ausgestellt.
- (2) Das Zertifikat wird vom Vorsitzenden des Prüfungsausschusses und dem kursverantwortlichen Hochschullehrenden unterzeichnet.
- (3) Legt ein Teilnehmer keine Prüfungsleistung ab oder besteht er die Prüfung nicht, kann ihm eine Teilnahmebescheinigung ausgestellt werden, wenn er mindestens 80 % des Kurses besucht hat.

§ 8 Prüfungsausschuss

Für die Organisation der Prüfungen ist der Prüfungsausschuss des Fachbereichs Chemie zuständig.

§ 9 Inkrafttreten

Diese Prüfungsordnung tritt am Tag nach ihrer Veröffentlichung in den Amtlichen Bekanntmachungen der Hochschule Niederrhein (Amtl. Bek. HN) in Kraft.

Ausgefertigt aufgrund des Beschlusses des Fachbereichsrates des Fachbereichs Chemie vom 28.01.2016 und der Feststellung der Rechtmäßigkeit durch das Präsidium der Hochschule Niederrhein vom 26.04.2016.

Krefeld, den 06. Juni 2016

Der Dekan des Fachbereichs Chemie der Hochschule Niederrhein Prof. Dr. rer. nat. Michael Groteklaes

${\bf Modulbeschreibung} \ {\bf ``Statistische Versuchsplanung mit Excel-von den Grundlagen bis zur Validierung"}$

Modultitel	Statistische Versuchsplanung mit Excel – von den Grundlagen bis zur Validierung
Kürzel/Modulnummer	Validiciang
Modulverantwortlicher	Prof. Dr. Ernst Cleve, Ernst.Cleve@hs-niederrhein.de
Dozent/in	Prof. Dr. Ernst Cleve
Modultyp	WB-Pilotmodul
Dauer	100 h, davon 36 h Präsenz
Häufigkeit des Angebots	Zunächst Durchführung eines Piloten
Angestrebte	Die Teilnehmenden können die notwendigen mathematischen und
Lernergebnisse/ Learning	statistischen Methoden zur Versuchsplanung mit Excel sicher
outcomes	anwenden. So können sie schon im Frühstadium der Entwicklung
outcomes	eine passgenaue Planung, Auswahl und Auswertung von
	Experimenten entwickeln. Zusätzlich können die Teilnehmenden
	Methoden zur Modellierung und Visualisierung von Messdaten und
	Verfahren auf ihre spezifischen Fragestellungen anwenden.
	Absolvent/Innen können diese Fähigkeiten individualisiert auf
	Verfahrens- und Produktoptimierungen und Qualitätskontroll-
	prozesse übertragen.
Inhalte	- Warum Versuchsplanung; Vorgehensweise im Überblick, Ziel- und
	Einflussgrößen
	- Datenquellen & Vorbehandlung, Transformationen, Excel & VBA
	- Datensortierung, grafische Visualisierung von Messdaten &
	Funktionen, 3 D-Diagramme, Balken-/Säulendiagramme,
	Fehlerindikatoren, numerisches Integrieren & Differenzieren,
	Matrizenrechnung, Gleichungssysteme, Transzendente Gln., Solver
	unter Excel
	- Daten, Häufigkeitsdiagramme, Median-Statistik, Streumaße,
	- Verteilungsfunktionen (Binominal-, Normal-, t-, F-, Poisson-, Chi-
	Quadrat-, Weibullverteilung), Vertrauensintervalle
	- Prüfverfahren, Testen von Hypothesen und Verteilungen,
	Einseitiger-, Zweiseitiger t-Test, Mittelwerte, Chi Quadrat, p-Werte,
	einfache und zweifache Varianzanalyse, Wahrscheinlichkeitsnetz,
	Korrelationsmatrix
	- Ausreißer, Fehlerfortpflanzung
	- lineare- nichtlineare Regression, Kalibriergeradenverfahren,
	Nachweis-, Erfassungs-, Bestimmungsgrenze, Vertrauensintervall
	der Vorhersage und Parameter, Konfidenzbänder
	- Verallgemeinerung der Geradenregression, multiple lineare
	Regression, Residuenanalyse,
	- Voll- und Teilfaktorielle Versuchspläne, Konstruktionsprinzip,
	Berechnung der Effekte und Regressionskoeffizienten, Varianz-
	analyse, Vertrauensbereiche, Mittelwertabweichung
	- Überblick Versuchspläne (z.B. 2^3-, zentral zusammengesetzte-, D-
	optimale-, Mischungspläne usw.), Koeffizientenberechnung unter
	Excel, Optimierungsmöglichkeiten mit DOE-Software am
	praktischen Beispiel, Softwareüberblick, Validierung
Lehr-/Lernformen	Aktivierung der Teilnehmenden durch interaktiven Seminarcharakter
	und die Möglichkeit eigene Frage- und Problemstellungen
	einzubringen. PC-Arbeitsplätze, vielfältiger Medieneinsatz und

	Begleitung mit einer Online-Lernplattform.
Unterrichtssprache	Deutsch
Teilnahmevoraussetzungen	Ein naturwissenschaftlicher Hochschulabschluss sowie
	Grundkenntnisse in der Nutzung von Excel.
Prüfungsleistungen	90-minütige schriftliche Klausur über die Inhalte der Veranstaltung.
Leistungspunkte	3 ECTS, bei bestandener Prüfung
Workload/Arbeitsaufwand	100 h
Kontaktzeit	36 h
Selbststudium	64 h
Geplante Gruppengröße	Max. 20 TN
Verwendbarkeit des Moduls	
Literatur	Otto, M. Chemometrie, Statistik und Computereinsatz in der Analytik, Weinheim, VCH, 1997, ISBN 3-527-28837-6
	Kleppmann, Wilhelm: Taschenbuch Versuchsplanung, Hanser-Verlag, 6. Auflage, 2009, Carl Hanser Verlag München Wien, ISBN 978-3-446-42033-5
	Gundlach, C., Entwicklung eines ganzheitlichen Vorgehensmodells zur problemorientierten Anwendung der statistischen Versuchs- planung, kassel university press GmbH, Kassel 2004, ISBN 389958- 068-0
	Wember, T.: Technische Statistik und statistische Versuchsplanung Bestellung: http://www.versuchsplanung.de/kompetenz/dr-theo-wember
	Monka, M., Statistik am PC, 5. Auflage, 2008, Carl Hanser Verlag München, ISBN 978-3-446- 41555-3