

ABTEILUNG FÜR INFORMATIK UND

ANGEWANDTE KOGNITIONSWISSENSCHAFT

FAKULTÄT FÜR INGENIEURWISSENSCHAFTEN

Technischer Bericht Nr. 2012-01

Applying the Graph Minor Theorem to the
Verification of Graph Transformation Systems

Salil Joshi
Barbara König

 20.4.2012

 ISSN 1863-8554

IMPRESSUM:

Technische Berichte der Abteilung für Informatik und Angewandte
Kognitionswissenschaft, Universität Duisburg-Essen

ISSN 1863-8554

Herausgeber:

Abteilung für Informatik und Angewandte Kognitionswissenschaft
Fakultät für Ingenieurwissenschaften
Universität Duisburg-Essen
Campus Duisburg
47048 Duisburg

http://duepublico.uni-duisburg-essen.de/informatik/berichte.xml

Applying the Graph Minor Theorem to the
Verification of Graph Transformation Systems?

Salil Joshi1 and Barbara König2

1 Indian Institute of Technology, Delhi, India
2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany

Abstract. We show how to view certain subclasses of (single-pushout)
graph transformation systems as well-structured transition systems, which
leads to decidability of the covering problem via a backward analysis. As the
well-quasi order required for a well-structured transition system we use the
graph minor ordering. We give an explicit construction of the backward step
and apply our theory in order to show the correctness of a leader election
protocol.3

1 Introduction

In a series of seminal papers Robertson and Seymour have shown that graphs are
well-quasi-ordered with respect to the minor ordering [7, 8]: in any (infinite) se-
quence of graphs G0, G1, G2, . . . there are always two indices i < j such that Gi
is a minor of Gj . This means that Gi can be obtained from Gj by deleting and
contracting edges and by deleting isolated nodes.

The theorem has far-reaching consequences. It guarantees that every set of
graphs that is upward-closed with respect to the minor ordering can be represented
by a finite number of minimal graphs. Similarly, any downward-closed set of graphs
(e.g., planar graphs, forests, graphs embeddable in a torus) can be characterized by
a finite set of forbidden minors. A well-known special case are (undirected) planar
graphs which are characterized by two forbidden minors: the complete graph with
five nodes (K5) and the complete bipartite graph with six nodes (K3,3), a fact which
is known as Kuratowski’s theorem.

Well-quasi-orders (wqo’s) also play a fundamental role in the analysis of a class
of (infinite-state) transition systems, so called well-structured transition systems
(WSTS) [4]. States in a WSTS are well-quasi-ordered and the standard analysis
method shows whether some state in an upward-closed set is reachable from an
initial state by performing backward analysis. The well-quasi-ordering guarantees
that upward-closed sets are finitely representable, that the set of predecessors is
also upward-closed and that the technique terminates after finitely many steps.

One important example for WSTS are Petri net transition system, where a
marking m1 is considered larger than or equal to m2 if it contains at least as many
tokens in every place. Other examples are string rewrite systems, basic process
algebra and communicating finite state machines. A transition system that can not
be naturally viewed as a WSTS can often be turned into one by introducing some
notion of “lossiness”. For instance an unreliable channel may lose messages and a

? Research partially supported by the DFG project SANDS.
3 This paper is the full version of a paper published in the CAV ’08 proceedings. Fur-

thermore it corrects two errors which were present in the original version: there was
a mistake in the definition of the minor relation for hypergraphs (Definition 11), and
furthermore Fig. 4 was wrong.

suitable wqo considers the content c1 of a channel as greater than c2 if c2 can be
obtained from c1 by dropping some messages.

The graph minor ordering fits well with this intuition of “lossiness” and seems to
be applicable to networks where edges (connections or processes) may disappear—
possibly due to faults—and where edges can be contracted. The latter phenomenon
appears if a process leaves a network by connecting its predecessor and successor,
something which typically happens in rings.

Here we show how to view certain graph transformation systems (GTS) as WSTS
with respect to the minor ordering. GTS are an intuitive formalism, well-suited to
model concurrent and distributed systems. In general GTS are Turing-complete and
due to undecidability issues it is hard to imagine a useful wqo for the general case.
However, if the GTS exhibits features as described above it can be successfully
verified.

GTS are typically defined by means of category theory, which makes the defi-
nition of rewriting steps less tedious. Graph rewriting is defined via pushouts in a
suitable category of graph morphisms and in the rest of this paper we will exploit
certain well-known properties of pushouts. The relation of a graph G to its minor
H can be represented by a partial graph morphism with specific properties. Since
the theory requires the handling of partial morphisms, we have decided to work in
the single-pushout approach (SPO) which uses partial morphisms [5, 3].

The paper is organized as follows: Section 2 introduces the basic definitions. In
Section 3 we consider classes of GTS that can be seen as WSTS, and introduce the
techniques for their analysis. In Section 4 we will look at a leader election protocol
and show how the analysis method works in practice.

2 Preliminaries

Here we introduce some of the basic notions needed in the paper, especially well-
quasi-orders, well-structured transition systems, graph transformation systems and
minors.

2.1 Well-quasi-order

Definition 1 (wqo). A well-quasi-order (wqo) is any quasi-ordering4 ≤ (over
some set X) such that, for any infinite sequence x0, x1, x2,. . . in X, there exist
indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that y ≥ x and x ∈ I entail y ∈ I.
A downward-closed set can be analogously defined.

For an element x ∈ I, we define ↑ x = {y | y ≥ x}. Then, a basis of an
upward-closed set I is a set Ib such that I =

⋃
x∈Ib ↑x.

Lemma 2.

1. If ≤ is a well-quasi-ordering then any upward-closed I has a finite basis.
2. If ≤ is a wqo and I0 ⊆ I1 ⊆ I2 ⊆ . . . is an infinite increasing sequence of upward-

closed sets, then there exists an index k ∈ N such that Ik = Ik+1 = Ik+2 = . . .

2.2 Well-Structured Transition Systems

Definition 3 (WSTS). A well-structured transition system (WSTS) is a transi-
tion system T = (S,⇒,≤), where S is a set of states and ⇒ ⊆ S×S, such that the
following conditions hold:
4 Note that a quasi-order is the same as a preorder.

2

1. Well quasi ordering: ≤ is a well-quasi-ordering on S.
2. Compatibility: For all s1 ≤ t1 and a transition s1 ⇒ s2,

there exists a sequence t1 ⇒∗ t2 of transitions such that
s2 ≤ t2.

t1
∗+3 t2

≤ ≤

s1 +3 s2

Given a set I ⊆ S of states we denote by Pred(I) the set of direct predecessors
of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I: s⇒ s′}. Furthermore Pred∗(I) is the set of all
predecessors.

Let (S,⇒,≤) be a WSTS. Consider a set of states I ⊆ S. Backward reachability
analysis involves the computation of Pred∗(I) as the limit of the sequence I0 ⊆
I1 ⊆ I2 ⊆ . . . where I0 = I and In+1 = In ∪Pred(In). However, in general this may
not terminate. For WSTS, if I is upward-closed then it can be shown that Pred∗(I)
is also upward-closed (compatibility condition) and that termination is guaranteed
(Lemma 2).

Definition 4 (Effective pred-basis). A WSTS has an effective pred-basis if
there exists an algorithm accepting any state s ∈ S and returning pb(s), a finite
basis of ↑Pred(↑s).

Now assume that T is a WSTS with effective pred-basis. Pick a finite basis Ib of I
and define a sequence K0,K1,K2, . . . of sets with K0 = Ib and Kn+1 = Kn∪pb(Kn).
Let m be the first index such that ↑Km =↑Km+1. Such an m must exist by Lemma
2 and we have ↑Km = Pred∗(I). Finally, note that due to Lemma 2 every set Kn

can be represented by a finite basis.
The covering problem is to decide, given two states s and t, whether starting

from a state s it is possible to cover t, i.e. to reach a state t′ such that t′ ≥ t. From
the previous argument follows the decidability of the covering problem.

Theorem 5 (Covering problem). The covering problem is decidable for a WSTS
with an effective pred-basis and a decidable wqo ≤.

Thus, if T is a WSTS and the “error states” can be represented as an upward-
closed set I, then it is decidable whether any element of I is reachable from the
start state.

2.3 Graphs and Graph Transformation

Definition 6 (Hypergraph). Let Λ be a finite sets of edge labels and ar :Λ →
N a function that assigns an arity to each label. A (Λ-)hypergraph is a tuple
(VG, EG, cG, lEG) where VG is a finite set of nodes, EG is a finite set of edges,
cG:EG → V ∗G is a connection function and lEG:EG → Λ is an edge labelling function.
We require that |cG(e)| = ar(lEG(e)) for each edge e ∈ EG

An edge e is called adjacent to a node v if v occurs in cG(e).

Directed labelled graphs are a special case of hypergraphs where every sequence
cG(e) is of length two.

A path in a hypergraph is a sequence v0, e1, v1, . . . , vn−1, en, vn of nodes such
that for every index i ∈ {1, . . . , n} both nodes vi−1 and vi are adjacent to ei.

Definition 7 (Partial hypergraph morphism). Let G, G′ be (Λ-)hypergraphs.
A partial hypergraph morphism (or simply morphism) ϕ:G ⇀ G′ consists of a pair
of partial functions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that for every e ∈ EG
it holds that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is
defined. Furthermore if a morphism is defined on an edge, it must be defined on all
nodes adjacent to it. (This condition need not hold in the other direction.)

Total morphisms are denoted by an arrow of the form →.

3

In the following we will drop the subscripts and write ϕ instead of ϕV and ϕE .
Gluing of graphs along a common subgraph is done via pushouts in the category

of partial graph morphisms.

Definition 8 (Pushout).

Let ϕ:G0 ⇀ G1 and ψ:G0 ⇀ G2 be two partial
graph morphisms. The pushout of ϕ and ψ consists
of a graph G3 and two graph morphisms ψ′:G1 ⇀
G3, ϕ′:G2 ⇀ G3 such that ψ′ ◦ ϕ = ϕ′ ◦ ψ and
for every other pair of morphisms ψ′′:G1 ⇀ G′3,
ϕ′′:G2 ⇀ G′3 such that ψ′′ ◦ϕ = ϕ′′ ◦ψ there exists
a unique morphism η:G3 ⇀ G′3 with η ◦ ψ′ = ψ′′

and η ◦ ϕ′ = ϕ′′.

G0

ϕ
�

ψ �
G2

ϕ′

� ϕ′′

�

G1
ψ′
�

ψ′′ �

G3 η

�

G′3

It is known that pushouts of partial graph morphisms always exist, that they are
unique up to isomorphism and that they can be constructed as follows. The intuition
behind the construction is that G1, G2 are glued together along a common interface
G0 and that an element is deleted if it is deleted by either ϕ or ψ.

Proposition 9 (Construction of pushouts). Let ϕ:G0 ⇀ G1, ψ:G0 ⇀ G2 be
partial hypergraph morphisms. Furthermore let ≡V be the smallest equivalence on
VG1 ∪ VG2 and ≡E the smallest equivalence on EG1 ∪ EG2 such that ϕ(x) ≡ ψ(x)
for every element x of G0.

An equivalence class of nodes is called valid if it does not contain the image of
a node x for which ϕ(x) or ψ(x) are undefined. Similarly a class of edges is valid
if the analogous condition holds and furthermore all nodes adjacent to these edges
are contained in valid equivalence classes.

Then the pushout G3 of ϕ and ψ consists of all valid equivalence classes [x]≡ as
nodes and edges, where lG3([e]≡) = lGi(e) and cG3([e]≡) = [v1]≡ . . . [vk]≡ if e ∈ EGi

and cGi(e) = v1 . . . vk.

It can be seen that the pushout of two total morphisms (in the category of partial
morphisms) always results in two total morphisms. Furthermore it is equal to their
pushout in the category of total morphisms. However ϕ total and ψ partial does
not necessarily imply that ϕ′ is total. This is due to so-called deletion/preservation
conflicts where two elements x0, x

′
0 of G0 are mapped to the same element of G1, i.e.,

ϕ(x0) = ϕ(x′0), while ψ(x0) is defined, whereas ψ(x′0) is undefined. The construction
above suggests that then ϕ′(ψ(x0)) must be undefined, i.e., ϕ′ is not total. If no
such elements x0, x

′
0 can be found, then ϕ is said to be conflict-free with respect to

ψ and in this case ϕ′ is always total.

Definition 10 (Graph rewriting). A rewriting rule is a partial morphism r:L ⇀
R, where L is called left-hand side and R right-hand side.

A match (of r) is a total morphism m:L→ G which is conflict-free wrt. r.
Given a rule and a match, a rewriting step or an application of the rule to the

graph G, resulting in H, is a pushout diagram as shown in Fig. 1 on the left. In
this case we write G⇒ H.

Intuitively, we can think of this as follows: L is a subgraph of G, all items of L
whose image is undefined under r are deleted, the new items of R are added and
connected as specified by r. Note that whenever a node is deleted, all adjacent edges
will be deleted as well.

Fig. 1 shows two examples for graph rewriting steps. In the middle pushout a
binary hyperedge generates another (unary) hyperedge, whereas in the right pushout

4

L
r �

m

��

R

��
G

�
H

1

2

3

1 2

1

2

4

4

5

5

1 2

3

3

1 2

⇀

⇀

3

2

1

1

1

↓

1

1

↓

1

2

3

1,2

1,2

1 2

3

3

1 2

3

2

↓
1

↓
⇀

⇀

Fig. 1: Single-pushout graph rewriting (pushout diagram and example rewriting steps).

an edge is contracted. The way in which the morphisms map nodes and edges is
indicated by the small numbers next to the edges. These specific rewriting rules will
also play a role in our application (see Section 4).

In the context of this paper a graph transformation system (GTS) consists of a
finite set R of rewriting rules. Sometimes we will fix an initial graph or start graph.

2.4 Minors and Minor Morphisms

We will now review the notion of a graph minor.

Definition 11 (Minor). A graph Ĝ is a minor of a (hyper-)graph G, if Ĝ can be
obtained from G by (repeatedly) performing the following operations on G:

1. Deletion of an edge.
2. Contraction of an edge. In this case we remove the edge, choose an arbitrary

partition on the nodes connected to the edge and merge the nodes as specified by
the partition. (This includes edge deletion as a special case.)

3. Deletion of an isolated node.

The Robertson-Seymour Theorem [7] says that the minor order is a well-quasi-
order. In fact, this theorem is true even if the edges and vertices of the graphs are
labelled from a well-quasi-ordered set, and also for hypergraphs and directed graphs
(see [8]). In fact, we here use a slightly different minor ordering than the one in [8],
but we will prove in Appendix A (Proposition 22) that our variant also gives rise
to a well-quasi order.

Now, if we could show that a GTS satisfies the compatibility condition of Defi-
nition 3 (with respect to the minor ordering), we could analyze it using the theory
of WSTS. But before we characterize such GTS we first need the definition of mi-
nor morphisms and their properties. A minor morphism is a partial morphism that
identifies a minor of a graph.

Definition 12 (Minor morphism). A partial morphism µ : G ⇀ Ĝ is a minor
morphism (written µ : G 7→ Ĝ) if

1. it is surjective,
2. it is injective on edges and
3. whenever µ(v) = µ(w) = z for some v, w ∈ VG and z ∈ VĜ, there exists a path

between v and w in G where all nodes on the path are mapped to z and µ is
undefined on every edge on the path.

In [8] a different way to characterize minors is proposed: a function, going in
the opposite direction, mapping nodes of Ĝ to subgraphs of G. This however can
not be seen as a morphism in the sense of Definition 7 and we would have problems
integrating it properly into the theory of graph rewriting.

One can show the following facts about minor morphisms.

5

Lemma 13. Ĝ is a minor of G iff there exists a minor morphism µ : G 7→ Ĝ.

Lemma 14. Pushouts preserve minor morphisms in the following sense: If
f : G0 7→ G1 is a minor morphism and g : G0 → G2 is total, then the morphism f ′

in the pushout diagram below is a minor morphism.

G0

g

��

� f // G1

g′

�

G2
� f ′

// G3

3 GTS as WSTS!

As observed earlier, a GTS can be seen as a WSTS with the minor relation as the
well-quasi-ordering, provided the GTS satisfies the compatibility condition intro-
duced in Definition 3.

3.1 Characterization

We will first give a sufficient condition that allows us to view a GTS as a WSTS.
Note that the fundamental problem is that whenever a minor of G contains a left-
hand side, then G might contain a “disconnected” copy of the left-hand side.

Proposition 15 (GTS as WSTS). Let R be a GTS that satisfies the following
condition: For every rule (r:L ⇀ R) ∈ R, every minor morphism µ:G 7→ Ĝ and
every match m:L → Ĝ (see diagram on the left) there exists a graph G′ such
that G ⇒∗ G′, there is a minor morphism µ′:G′ 7→ Ĝ and there exists a match
m′:L → G′ such that m = µ′ ◦ m′ (see commuting diagram below on the right).
Then R is a WSTS.

Gc

µ

**

L

m

��
Ĝ

G
∗!)JJJJJJ

JJJJJJb

µ

))

L
m′
��

m

yy

G′_
µ′
��
Ĝ

With this characterization we can now identify suitable types of GTS that are
WSTS:

– Context-free graph grammars, where the left-hand side of every rule consists of
a single hyperedge. Here G must always contain a match of L that makes the
above diagram commute and no intermediate graph G′ is needed.

– GTS where the left-hand sides of the rules consist of disconnected edges. The
argument is analogous to the case above.

– Any arbitrary GTS can be transformed into a WSTS with the addition of all
proper edge contraction rules for every edge label (the contraction rule that
does not contract any nodes, but only deletes the edge, can be omitted). Now,
if Ĝ contains a subgraph which is isomorphic to a left-hand side, the pre-image
of this subgraph under µ is present in G, but it might possibly be disconnected.
The minor morphism µ makes the elements of L adjacent by contracting paths
and the same can be done by applying the additional edge contraction rules.

6

3.2 Backward Analysis

Let R be a set of graph transformation rules which satisfies the compatibility condi-
tion. Now we consider the question of performing a backward reachability analysis
on R which requires a method for computing an effective pred-basis pb(S) for a
given graph S.

Our method will involve the backwards application of an SPO rewriting rule.
This requires the completion of a diagram of the form L ⇀ R → H by a graph
G and morphisms L → G ⇀ H such that the square is a pushout. Then G is
a so-called pushout complement. Pushout complements are well-studied for total
morphisms since they are an essential ingredient in double-pushout rewriting. For
partial morphisms they have been studied to a lesser extent.

We will first demonstrate some issues that can arise with pushout complements:
for instance, the two total morphisms L ⇀ R→ H shown in Fig. 2 (left) (edges and
nodes are unlabelled, morphisms are indicated by numbers 1, 2) have five different
pushout complements. Note also that each pair of total morphisms has only finitely
many pushout complements (up to isomorphism).

1 2 //

��

1, 2

��

? // 1, 2

?:
1 2 2 1

2

1

2

1

1, 2

1 2 �

��

1

��

?
� 1

?:
1 2 1 2 1 2

1 2 1 2
. . .

Fig. 2: Left: Two total morphisms with five pushout complements. Right: A partial and a
total morphism with infinitely many pushout complements.

While the existence of multiple pushout complements is a feature that will be
needed to determine the pred-basis, the situation for partial morphisms is more
involved. Consider the diagram in Fig. 2 (right) where the morphism from L to R
is partial. Here we have infinitely many pushout complements. Note however that
the first graph is a minor of all other pushout complements. This suggests that only
the computation of minimal pushout complements is needed.

Now we will give a high-level description of the procedure for computing pb(S)
for a given graph S. A more detailed account will be given in Section 3.3 where we
will also argue that the procedure is indeed effective.

1. For each rule (r : L ⇀ R) ∈ R, letMR be the (finite) set of all minor morphisms
with source R.

2. For each (µ:R 7→M) ∈MR consider the rule µ ◦ r:L ⇀ M .

7

3. For each total match m′:M → S compute all minimal5 pushout complements
X such that m:L→ X below is total and conflict-free wrt. r.

L

m

��

µ◦r �
M

m′

��
X

�
S

4. The set pb(S) contains all graphs X obtained in this way.

That is, we use all minors of R as right-hand sides for the backward step. This
is needed since S represents an upward-closed set and not all items of R must be
present in S itself. We can now show the correctness of the procedure pb(S), where
the proof depends crucially on Lemma 14.

Theorem 16. The procedure pb(S) computes a finite subset of Pred(↑S).

In order to prove that pb(s) generates every member of the pred-basis, we first
prove a general result in the category of graphs and partial morphisms.

Lemma 17. Let ψ1:L→ G be total and conflict-free wrt. ψ2. If the diagram below
on the left is a pushout and µ:H 7→ S a minor morphism, then there exist minors
M and X of R and G respectively, such that

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms µG ◦ ψ1 : L → X and ϕ1 : M → S are total and µG ◦ ψ1 is

conflict-free wrt. ψ2.

L
ψ2 �

ψ1

��

R

ψ′
1

��
G

ψ′
2 �

H�
µ

��@@@@@@@

S

L
ψ2 �

ψ1

��

R

ψ′
1

��

� µR // M

ϕ1

��

G
ψ′

2 �
_
µG

��

H �
µ

 BBBBBBBB

X
ϕ2 �

S

The lemma above says that whenever S is a minor of H and G is a predecessor
of H, then we can make a backwards step for S and obtain X, a minor of G. Using
this lemma we can now state the completeness of the procedure pb(S).

Theorem 18. The set generated by pb(S) is a pred-basis of S.

3.3 Computing Minimal Pushout Complements

Now we consider the question of how to construct pushout complements when some
(but not all) of the morphisms involved may be partial. Hence consider a diagram
L

ϕ
⇀ L̃ → X̃. The idea is to split L

ϕ
⇀ L̃ = L ⇀ dom(ϕ) → L̃ where dom(ϕ) → L̃

is total and L ⇀ dom(ϕ) is an inverse injection, i.e., a morphism which is injective,
surjective, but not necessarily total. Now the task of computing pushout comple-
ments can be divided into two subtasks.

Lemma 19. Let L and L̃ be graphs, ϕ1 : L ⇀ L̃ be an inverse injection, and
ψ2 : L̃→ X̃ be a total morphism. Now construct a specific pushout complement X ′

with morphisms ψ′1:L→ X ′, ϕ′2:X ′ ⇀ X̃ as follows:
5 “Minimimal” means “minimal wrt. the well-quasi ordering ≤”.

8

1. Take a copy of the graph X̃, and let ψ′1 be ψ2 ◦ ϕ1. The morphism ϕ′2 is the
identity.

2. Let Y be the set of elements of L the image of which is undefined under ϕ1.
Add a copy of Y to this copy of X̃, and extend ψ′1 by mapping Y into this set.
Furthermore ϕ′2 is undefined on all elements of the copy of Y .

3. Now merge these new elements (originally contained in Y) in all possible com-
binations, i.e., factor through all appropriate6 equivalences. The morphisms ψ′1
and ϕ′2 are modified accordingly.

The set of graphs obtained in this way is denoted by P. Each
element X ′ of P is a pushout complement of ϕ1, ψ2 and the cor-
responding morphisms ψ′1:L→ X ′ are total. Any other pushout
complement X where ψ1 : L→ X is total (see diagram on the
right) has some graph X ′ ∈ P as a minor.

L

ψ1

��

ϕ1 �
L̃

ψ2

��
X

ϕ2 �
X̃

Finally, if ψ1:L→ X is conflict-free wrt. to a rule r : L ⇀ R, then there exists a
pushout complement X ′ ∈ P with ψ′1:L→ X ′ conflict-free wrt. r, such that X ′ ≤ X.

In order to do backwards application of rules in order to obtain pb(s), we con-
struct pushout complements (with total conflict-free matches) as follows:

Proposition 20. Let r:L ⇀ R be a fixed rule. Furthermore let L, M and S be
graphs, with a partial morphism ϕ1 : L ⇀ M and a total morphism ψ2 : M → S.
Then, if we apply the following procedure we only construct pushout complements
X ′ of ϕ1, ψ2 and any other pushout complement X (with ψ1:L → X where ψ1 is
total and conflict-free wrt. r) has one of them as a minor.

1. Split ϕ1 into two morphisms as follows: let ϕ′1 : L ⇀ dom(ϕ1) be an inverse
injection and let ϕ′′1 : dom(ϕ1)→M be total.

2. Now consider the total morphisms ϕ′′1 : dom(ϕ1) → M , and ψ2 : M → S.
Construct all their pushout complements as usual for total morphisms.7

3. Let X̃ be any such pushout complement with η: dom(ϕ1)→ X̃.
4. For ϕ′1, η use the construction of Lemma 19 in order to obtain the minimal

pushout complements X ′ (with total and conflict-free ψ′1).
5. Finally, from all such pushout complements X ′ take the minimal ones.

The situation is depicted in the diagram below.

L
ϕ′

1 �

ψ′
1��

dom(ϕ1)
ϕ′′

1 //

η
��

M

ψ2
��

X ′
�
X̃ // S

4 Example: Leader Election

As an example, we shall apply this technique to a typical leader election protocol, to
verify its correctness. The rules for this leader election protocol are shown in Fig. 3.
We start with a ring containing processes, each with a unique natural number as
ID. These processes can generate messages containing their ID, which are forwarded
whenever the ID of the message is smaller than the ID of the process which receives
it. A process becomes the leader if it receives a message containing its own ID.
Non-leader processes may also choose to leave the system at any time, connecting
6 Here “appropriate” means that whenever two edges are in the equivalence relation, all

their adjacent nodes must be pairwise equivalent.
7 We do not describe this construction here, but it is well-known that there are only

finitely many such pushout complements and that they can be constructed effectively.

9

its predecessor and successor. We will prove that such a system can never create
two leaders in the ring.

It can be seen that these rules satisfy the compatibility condition. The rule
for edge contraction can be interpreted as a process leaving the system. Note that
we do not need to add a rule for contracting messages (since messages are unary
hyperedges), or for edge deletion in order to ensure compatibility.

3

1 2

(a) Start graph

1 2 1 2

i i

i

11 22

i < j

j

i

j

i

11 22

i L

i

1 2 1,2

i

Fig. 3: Leader election (start graph and rewriting rules).

All forbidden minors (which we computed manually) are shown in Fig. 4. We
start with the first of these as the error state, and performing the backward analysis
we obtain the rest of the forbidden minors. We consider natural numbers up to a
certain bound, in order to keep the label and rule sets finite. Here, i, j or k as a
label indicates “any number” (except where a constraint is indicated). Thus, the
entire process has been fully parametrized, so that these forbidden minors are valid
for a start graph with an arbitrarily large number of processes in the ring. Since
the given start graph does not have any of these forbidden graphs as a minor, we
can conclude that the leader election protocol is correct, i.e., it can never create two
leaders.

Note that since our technique can handle infinite state spaces, we could use the
expressive power of graph transformation to extend the example in such a way that
the ring is extended by new processes during runtime.

5 Conclusion

We have shown how to view subclasses of graph transformation systems as WSTS
which gives us a decision algorithm for the covering problem. Currently we are work-
ing on an implementation which will help us to get a better insight into efficiency
issues. Specifically it will help us to answer how many backward steps usually have
to be taken and how many forbidden minors are generated. Although the worst
case behaviour of this technique will certainly be bad, it might be feasible for many
practical applications. We are also working on a more extended case study involving
a termination detection protocol.

Another issue is the treatment of negative application conditions that have so far
posed many problems in the analysis of GTSs. As already observed in [9] backward

10

L

L

(a) Error graph

i

L

i

i i

L

i i

L
i

i

L L

ii

j

i

Li < j i

i

i < j

j j

i

i < j

j j

i
i < j

j j

i i < j

j

j

i

i

j j

i < j

i

k

j

i < j < k

Fig. 4: Leader election (forbidden minors).

techniques seem to have fewer problems with negative application conditions than
forward techniques which have so far mainly been studied. We also believe that such
application conditions can be integrated with our technique.

Additional future work will be the investigation of partial order techniques (as in
[1]) and the combination with (approximative) forward techniques (as described in
[2, 6]) in order to eliminate states which are not reachable from the start graph early
on. In addition we work on a related technique which allows to show whether certain
invariants (represented by forbidden minors) are preserved by graph transformation
rules.

Acknowledgements: We would like to thank Javier Esparza for his suggestion
to explore the relation between WSTS and graph transformation.

References

1. Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general ap-
proach to partial order reductions in symbolic verification. In Proc. of CAV ’98, pages
379–390. Springer, 1998. LNCS 1427.

2. Paolo Baldan, Andrea Corradini, and Barbara König. A static analysis technique for
graph transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer-
Verlag, 2001. LNCS 2154.

3. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation—part II: Single pushout approach and
comparison with double pushout approach. In G. Rozenberg, editor, Handbook of Graph
Grammars and Computing by Graph Transformation, Vol.1: Foundations, chapter 4.
World Scientific, 1997.

11

4. Alain Finkel and Phillipe Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63–92, 2001.

5. Michael Löwe. Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science, 109:181–224, 1993.

6. Arend Rensink and Dino Distefano. Abstract graph transformation. In Proc. of SVV ’05
(3rd International Workshop on Software Verification and Validation), volume 157.1 of
ENTCS, pages 39–59, 2005.

7. Neil Robertson and Paul Seymour. Graph minors. XX. Wagner’s conjecture. Journal
of Combinatorial Theory, Series B, 92(2):325–357, 2004.

8. Neil Robertson and Paul Seymour. Graph minors. XXIII. Nash-Williams’ immersion
conjecture, 2006. Submitted for publication.
http://www.math.princeton.edu/~pds/papers/GM23/GM23.pdf.

9. Mayank Saksena, Oskar Wibling, and Bengt Jonsson. Graph grammar modeling and
verification of ad hoc routing protocols. In Proc. of TACAS ’08, pages 18–32. Springer,
2008. LNCS 4963.

A Proofs

Proposition 9 (Construction of pushouts). Let ϕ:G0 ⇀ G1, ψ:G0 ⇀ G2 be
partial hypergraph morphisms. Furthermore let ≡V be the smallest equivalence on
VG1 ∪ VG2 and ≡E the smallest equivalence on EG1 ∪ EG2 such that ϕ(x) ≡ ψ(x)
for every element x of G0.

An equivalence class of nodes is called valid if it does not contain the image of
a node x for which ϕ(x) or ψ(x) are undefined. Similarly a class of edges is valid
if the analogous condition holds and furthermore all nodes adjacent to these edges
are contained in valid equivalence classes.

Then the pushout G3 of ϕ and ψ consists of all valid equivalence classes [x]≡ as
nodes and edges, where lG3([e]≡) = lGi

(e) and cG3([e]≡) = [v1]≡ . . . [vk]≡ if e ∈ EGi

and cGi
(e) = v1 . . . vk.

Proof. First, note that G3 is a well-defined graph due to the removal of dangling
edges.

Now let ψ′:G1 ⇀ G3, ϕ′:G2 ⇀ G3 be the morphisms that map every item x of
G1 respectively G2 to its equivalence class [x]≡ in G3 if this class is valid. It is easy
to show that ψ′ ◦ ϕ = ϕ′ ◦ ψ, i.e., the diagram commutes.

Now let G′3 with morphisms ψ′′:G1 ⇀ G′3, ϕ′′:G2 ⇀ G′3 be another pair of
morphisms with ψ′′ ◦ ϕ = ϕ′′ ◦ ψ. We have to show that there exists a unique
morphism η:G3 ⇀ G3 with η ◦ ψ′ = ψ′′ and η ◦ ϕ′ = ϕ′′.

Define η as follows: let [x]≡ be an equivalence class of G3. Whenever x is an
element of G1 define η([x]≡) = ψ′′(x). Otherwise define η([x]≡) = ϕ′′(x). It can be
shown that η is well-defined.

The most complicated part of the proof is to show that the two triangles com-
mute. Take an item x1 of G1: if ψ′(x1) is defined, then by definition η(ψ′(x1)) =
η([x1]≡) = ψ′′(x1). Now assume that ψ′(x1) is undefined, which implies that the
equivalence class of x1 is invalid. That is, there exists a sequence y1, . . . , yn of
elements of G0 such that x1 = ϕ(y1), ψ(y1) = ψ(y2), ϕ(y2) = ϕ(y3), . . . , and
either ϕ(yn) or ψ(yn) is undefined. Assume without loss of generality that ϕ(yn)
is undefined. By post-composing every equation with either ψ′′ or ϕ′′ and taking
commutativity into account we obtain that ψ′′(x1) = ψ′′(ϕ(y1)) = ϕ′′(ψ(y1)) =
ϕ′′(ψ(y2)) = . . . = ψ′′(ϕ(yn)), which is undefined. Hence we conclude that ψ′′(x1)
is also undefined.

And due to its construction η is the unique morphism that makes the triangles
commute. ut

Lemma 21. The class of minor morphisms is closed under composition.

12

Proof. Let µ:G 7→ H, µ′:H 7→ J be two minor morphisms. Obviously the compo-
sition µ′ ◦ µ is surjective and injective on edges. It remains to show that the third
property is also satisfied.

So let v, w be two nodes of G with µ′(µ(v)) = µ′(µ(w)) = z. Since µ′ is a minor
morphism there exists a path between µ(v) and µ(w) in H consisting of edges
e′1, . . . , e

′
n, where e′i is adjacent to nodes v′i, w

′
i. Furthermore µ(v) = v′1, w′i = v′i+1,

w′n = µ(w), all nodes are mapped to z by µ′ and the image of all edges is undefined.
The morphism µ is surjective, hence there exist edges e1, . . . , en in G such that

µ(ei) = e′i, where ei is adjacent to nodes vi, wi with µ(vi) = v′i and µ(wi) =
w′i. Hence vi and wi+1 are connected by a path f i1, . . . , f

i
mi

. Furthermore, since
µ(v1) = v′1 = µ(v) there exists a path f0

1 , . . . , f
0
m0

from v to v1 and analogously a
path fn+1

1 , . . . , fn+1
mn+1

from wn to w. Also, the image of all these edges under µ is
undefined.

So the combined path f0
1 , . . . , f

0
m0
, e1, f

1
1 , . . . , f

n
mn
, en, f

n+1
1 , . . . , fn+1

mn+1
connects

v and w and it satisfies all the requirements of Definition 12. ut

Lemma 13. Ĝ is a minor of G iff there exists a minor morphism µ : G 7→ Ĝ.

Proof. If Ĝ is a minor of G, then Ĝ can be obtained from G by deleting edges and
isolated nodes, and contracting edges as specified in Definition 12. Clearly each of
these operations can be separately specified by a minor morphism. If such operations
are applied repeatedly the result follows from the fact that minor morphisms are
closed under composition.

Conversely, let µ : G 7→ Ĝ be a minor morphism. Now perform the following
operations on G. First, determine all nodes in Ĝ which have more than one preim-
age under µ. Since all preimages have to be connected by paths in G, where µ is
undefined on the edges in the paths, we can contract all such edges, resulting in a
graph G′ with a minor morphism G 7→ G′, where all nodes in a preimage have been
merged. Afterwards, if an edge in G has no image under µ, then we can delete it
from G. If a node has no image under µ, then, since µ is a morphism, it is clear that
all edges adjacent to µ also do not have an image under µ. Hence, we can delete
these edges from G, leaving us with an isolated node, which can then be deleted.
Continuing this process we will obtain Ĝ, and since we have restricted ourselves
only to the “allowed” operations, it is clear that Ĝ is a minor of G. ut

Proposition 22. The minor ordering is a well-quasi order.

Proof. The result is a corollary of the results in [8]. Assume that we have a sequence
G1, G2, G3, . . . of graphs. We will use Theorem (1.6) from [8] that requires a sequence
of hypergraphs where each edge is connected to a sequence of nodes which are all
distinct and for which we have a well-quasi order on the label set.

In order to make sure that the nodes attached to an edge are all distinct,
we transform graphs as follows: let Λ be the label alphabet and for each label
` ∈ Λ with ar(`) = k we enumerate all partitions on the set {1, . . . , k}. For each
such partition we fix an arbitrary order on the equivalence classes. The new la-
bel set Λ′ now consists of pairs (`, E1 . . . En) where E1 . . . En is one of the cho-
sen sequences of equivalence classes. We set ar((`, E1 . . . En)) = n. Now trans-
form a graph G into a graph G′ by replacing every edge with label ` of arity k
where n = |{v ∈ VG | v adjacent to e}| by a corresponding edge e′ with label
(`, E1 . . . En). Here E1, . . . , En are the equivalence classes induced by the equiva-
lence i ≡ j ⇐⇒ [cG(e)]i = [cG(e)]j . The new edge e′ is attached to a node sequence
v′1 . . . v

′
n, where v′i = [cG(e)]j for an arbitrary index j ∈ Ei. Note that two graphs

G,H are isomorphic if and only if their transformed graphs G′, H ′ are isomorphic.
Concerning the second requirement (well-quasi order on the labels): since we

have only finitely many labels in Λ the set Λ′ is finite as well and we can choose the
identity as well-quasi order.

13

We now consider the transformed sequence G′1, G
′
2, G

′
3, According to Propo-

sition (1.6) there exists indices i < j such that there is a collapse of G′j to G′i. More
precisely, there exists a function η with domain VG′

i
∪ EG′

i
such that:

1. η(v) is a non-empty connected subgraph of KVG′
j

(where KV is the undirected

complete graph on the node set V) and the graphs η(u), η(v) are pairwise disjoint
for distinct u, v ∈ VG′

i
.

2. η(e) ∈ EG′
j

for all e ∈ EG′
i

and η is injective on edges and label-preserving.
3. For e ∈ EG′

i
if cG′

i
(e) = v1 . . . vn, then cG′

j
(η(e)) = u1 . . . un and ui is contained

in the subgraph η(vi) for every i ∈ {1, . . . , n}.
4. For each v ∈ VG′

i
and each (undirected) edge f in η(v), connecting x, y ∈ VG′

j
,

there exists an edge e ∈ EG′
j

which is adjacent to x, y. Furthermore e is not in
the image of η. (The latter can be assumed since our label alphabet is finite and
each label is associated with an arity. Hence every edge is bounded, i.e., has a
finite neighbourhood.)

Now define a minor morphism µ:G′j 7→ G′i as follows:

– An edge e′ of G′j is mapped to e in G′i whenever η(e) = e′. If no such edge exists
µ(e) is undefined. This is well-defined since η is injective on edges (Condition 2).
Furthermore µ is injective and surjective on edges and preserves labels.

– Whenever a node v′ of G′j is contained in a subgraph η(v) we map v′ to v.
Otherwise µ(v′) is undefined. Clearly due to Condition 1 µ obtained in this way
is well-defined and surjective on nodes.

We next verify that µ is a partial morphism. Assume that µ(e′) = e with cG′
i
(e) =

v1 . . . vn and cG′
j
(e′) = u1 . . . un: then η(e) = e′ and ui is contained in η(vi) (Con-

dition 3). Hence ui is mapped to vi, which means that the image of all nodes is
defined and the map µ is structure-preserving.

Finally assume that µ(v′) = µ(w′) = z. This means that v′, w′ are both contained
in η(z). Since the subgraph η(z) is connected there exists a path from v′ to w′ in
η(z). Let us denote this path by v′ = v′0, f1, v

′
1, . . . , v

′
n−1, fn, v

′
n. By Condition 4 we

can require that there exists edges e′k ∈ EG′
j
, which are not in the image of η and

adjacent to v′k−1, v
′
k. This implies the existence of a path v′0, e

′
1, v
′
1, . . . , v

′
n−1, e

′
n, v
′
n

such that µ(e′k) is undefined and µ(v′k) = z (since all nodes v′0, . . . , v
′
n are within

the subgraph η(z) and are hence mapped to z).
This means that µ:G′j 7→ G′i is a minor morphism. It is now left to transform

G′i, G
′
j back to Gi, Gj . It is easy to check that there exists a minor morphism

µ:Gi 7→ Gj .
Note that the collapse relation of [8] is finer than the minor ordering of Defini-

tion 12. Especially a minor morphism might map straight edges to loops, which is
not allowed in the collapse. However, this only means that we might “miss” some
pairs of related graphs, but we will always find one.

ut

Lemma 14. Pushouts preserve minor morphisms in the following sense: If
f : G0 7→ G1 is a minor morphism and g : G0 → G2 is total, then the morphism f ′

in the pushout diagram below is a minor morphism.

G0

g

��

� f // G1

g′

�

G2
� f ′

// G3

14

Proof. Let G3 be the pushout of G0 along f and g. Let v, w ∈ VG2 be two nodes
that are mapped to the same node z ∈ VG3 via the morphism f ′ : G2 → G3. But
this means that v and w are in the same equivalence class, and thus necessarily
have pre-images v′ and w′ in G0.

Now, since they are in the same equivalence class, there exists a sequence of
nodes y1, y2, . . . yn ∈ VG0 with y1 = v′ and yn = w′ such that f(y1) = f(y2), g(y2) =
g(y3), . . . Since f is a minor morphism there exists a path (in G0) from yi to yi+1, i ∈
{1, 3, . . .} such that all nodes on the path are mapped to f(yi).

Since g is total, there also exists a path from g(yi) to g(yi+1), i ∈ {1, 3, . . .} in
G2. Now, due to commutativity, all nodes on such a path (in G2) will be mapped
to the same node in G3. Also due to commutativity, the images of all the edges in
this path are undefined, since the equivalence class is not valid (due to f being a
minor morphism). Further, since g(yi) = g(yi+1) for i ∈ {2, 4, . . .}, there is a path
from g(y1) = v to g(yn) = w such that all nodes on that path are mapped to the
same node, z ∈ VG3 , and none of the edges in this path lie in the domain of f ′.
Also, surjectivity (on nodes and edges) and injectivity (on edges) is preserved by
the pushout construction.

Thus, f ′ is a minor morphism. ut

Note that in the proof above we did not require g′ to be total, i.e., the lemma
also holds in the presence of deletion/preservation conflicts. It is however necessary
to demand that g is total.

Proposition 15 (GSTS as WSTS). Let R be a GTS that satisfies the following
condition: For every rule (r:L ⇀ R) ∈ R, every minor morphism µ:G 7→ Ĝ and
every match m:L → Ĝ (see diagram on the left) there exists a graph G′ such
that G ⇒∗ G′, there is a minor morphism µ′:G′ 7→ Ĝ and there exists a match
m′:L → G′ such that m = µ′ ◦ m′ (see commuting diagram below on the right).
Then R is a WSTS.

Gc

µ

**

L

m

��
Ĝ

G
∗!)JJJJJJ

JJJJJJb

µ

))

L
m′
��

m

yy

G′_
µ′
��
Ĝ

Proof. Let Ĝ be a graph that is rewritten to Ĥ via r:L ⇀ R and an injective match
m:L → Ĝ. Assume that Ĝ ≤ G. That is, according to Lemma 13 there exists a
minor morphism µ:G→ Ĝ.

This means that m can be factored as specified in the assumption, leading to the
diagram below on the left where the square is a pushout. Note also that whenever
m is conflict-free, then m′ must be conflict-free.

L

m′

��

�

m

R

��

G′_

µ′

��
Ĝ

�
Ĥ

L

m′

��

�

m

R

��
G′_

µ′

��

�
H ′_

��
Ĝ

�
Ĥ

The pushout square can be split into two pushouts via standard pushout splitting
(see diagram on the right) and from a variation of Lemma 14 it follows that the

15

resulting morphism H ′ 7→ Ĥ is a minor morphism. (Note that the minor morphism
µ′:G′ 7→ Ĝ does not contract any edges on which G′ ⇀ H ′ is undefined, hence those
contractions can also be performed in H ′.)

Hence G can first be rewritten to G′ and then G′ is rewritten in one step to H ′,
where Ĥ ≤ H ′. This concludes the proof. ut

Theorem 16. The procedure pb(S) computes a finite subset of Pred(↑S).

Proof. Let G be any graph that has been obtained in an iteration of the procedure
pb(S). Then there must be a Rule r : L ⇀ R and a minor M of R (identified by
the minor morphism µ), such that the diagram on the left below is a pushout.

L

m

��

µ◦r �
M

m′

��
G n

�
S

L

m

��

r �
R

� µ //

k

��

M

m′

��
G

n′ �

n

*PSUXZ]_adfiknH
� f // S

Now, construct the pushout H of the morphisms r and m. Then, there exists a
unique morphism f : H ⇀ S (see diagram on the right).

This diagram commutes. Further, the outer rectangle is a pushout and the inner
left square is a pushout (by construction). This implies that the inner right square
is also a pushout.

Then, since m is conflict-free wrt. r (by construction), the rule is applicable and
G rewrites to H. Furthermore k is total and hence from Lemma 14 we know that
f is a minor morphism. Therefore H ≥ S and G ∈ Pred(↑S), for each G ∈ pb(S).

ut

Lemma 17. Let ψ1:L→ G be total and conflict-free wrt. ψ2. If the diagram below
on the left is a pushout and µ:H 7→ S a minor morphism, then there exist minors
M and X of R and G respectively, such that

1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms µG ◦ ψ1 : L → X and ϕ1 : M → S are total and µG ◦ ψ1 is

conflict-free wrt. ψ2.

L
ψ2 �

ψ1

��

R

ψ′
1

��
G

ψ′
2 �

H�
µ

��@@@@@@@

S

L
ψ2 �

ψ1

��

R

ψ′
1

��

� µR // M

ϕ1

��

G
ψ′

2 �
_
µG

��

H �
µ

 BBBBBBBB

X
ϕ2 �

S

Proof. From R, construct a minor M (and simultaneously a minor morphism µR)
as follows:

1. First, let M be simply a copy of R
2. For e ∈ ER, if the image of e in H under ψ′1 is contracted to construct S, then

contract the corresponding edge in M . In this case e is undefined under µR and
its adjacent nodes are mapped to the merged node in M . If e is deleted (without
contracting the nodes), delete it in M as well, and leave e undefined under µR.

16

3. Now, let v ∈ VR be such that its image in H is deleted in constructing S. This
implies that the image of v in H is either an isolated node, or all its adjacent
edges were deleted. So since we deleted corresponding edges in M , we can safely
delete v in M , and leave it undefined under µR. (Note that it is not possible for
R to have an edge that is not mapped to an edge in H, since L → G is total
and conflict-free and hence ψ′1 must be total).

Now, M is a minor of R, because the construction involved only the “allowed”
operations. Further, due to its construction, µR is a minor morphism.

Perform a similar construction for X, with one difference: For x ∈ G such that
x has a pre-image in L, do not contract/delete it in X, even if x had an image in
H that was contracted/deleted in constructing S. (The intuition for this is that it
is enough for an item to be contracted/deleted by one of the minor morphisms for
it to be contracted/deleted in the pushout graph.) The rest of the construction is
as before. Again, X is a minor of G and µG : G 7→ X is a minor morphism. Further
µG ◦ψ1 is total since ψ1 is total and µG is defined for all elements with a pre-image
in L.

Also, µG ◦ ψ1 is conflict-free with respect to ψ2. To see this suppose there exist
nodes v1, v2 ∈ L such that (µG◦ψ1)(x1) = (µG◦ψ1)(x2). Whenever x1, x2 are edges,
then ψ1(x1) = ψ1(x2), since µG does not merge edges. In this case by assumption
ψ2 is either undefined on both or defined on both. A similar argument applies
whenever x1, x2 are nodes and ψ1(x1) = ψ1(x2). So now assume that x1, x2 are
nodes and y1 = ψ1(x1) 6= ψ1(x2) = y2. Then, µG(y1) = µG(y2) implies that y1 and
y2 are nodes and have distinct images in H with a path connecting them which is
contracted while constructing S. Hence, ψ2(x1) and ψ2(x2) are both defined and
distinct. Thus there cannot be a deletion/preservation conflict.

Now, we construct the morphisms ϕ1 : M → S and ϕ2 : X ⇀ S (see diagram
above). For any x ∈ R We define ϕ1 as:

ϕ1(µR(x))
def
= µ(ψ′1(x))

To see that this is valid, first note that if µR(x) is undefined, then µ(ψ′1(x)) will
also be undefined because of the construction of µR. Then, if there exist x1, x2 such
that µR(x1) = µR(x2), then x1 and x2 must be nodes and not edges, because µR is
injective on edges. Secondly, we must have µ(ψ′1(x1)) = µ(ψ′1(x2)). Thus the above
definition is valid.

Further, ψ′1 is total (since ψ1 is total and conflict-free), µ(ψ′1(x)) is undefined
iff µ is undefined at ψ′1(x), and in that case µR(x) will also be undefined. This,
combined with the fact that µR is surjective, implies that ϕ1 is total. Also, the
relevant part of the diagram commutes, due to the definition of ϕ1.

Similarly, ϕ2 is defined as:

ϕ2(µG(x))
def
= µ(ψ′2(x))

By essentially the same argument as in the case of µR, we can show that this
definition is valid and the relevant part of the above diagram commutes. However,
in this case ϕ2 may be partial, because for a node x with a pre-image in L, ψ′2(µ(x))
may undefined but µG(x) will still be defined. For such a node, ϕ2 will be left
undefined.

Furthermore it can be straightforwardly shown that ϕ1, ϕ2 satisfy all properties
of a morphism. And finally, since each of the parts of the above diagram commute,
the diagram as a whole also commutes.

Now, let there be some graph G and two morphisms f : M → G and g : X → G,
such that (f ◦ µR) ◦ ψ2 = (g ◦ µG) ◦ ψ1, then, since H is a pushout, there exists
η : H → G such that η is the unique morphism with f◦µR = η◦ψ′1 and g◦µG = η◦ψ′2.

17

For x ∈ H, define a morphism η′ : S → G as follows:

η′(µ(x))
def
= η(x)

Since µ is surjective, every element y ∈ S has a pre-image x ∈ H, hence η′ can in
principle be defined for every such y by the above definition. The current situation
is depicted below:

L
ψ2 �

ψ1

��

R

ψ′
1

��

� µR // M

ϕ1

��

f

�

7
5

2
0

.
,

*
)

'
%

$
"

�

G
ψ′

2 �
_
µG

��

H
η

�

\ Z W T P L G A;
5

1
-

)
'

$

�

µ
 BBBBBBBB

X
ϕ2 �

g

J L N P R S U W X Z [] ^ `

S

η′ �AAAAAAAA

G

It is left to show that η′ is well-defined and unique. Now, if there exist x1, x2 such
that µ(x1) = µ(x2), then x1 and x2 must be nodes (since µ is a minor morphism),
and further, there must be a path connecting them, such that all nodes on this
path are also mapped to the same node. Then, if η(x1) 6= η(x2), there exist y1, y2
which lie on this path from x1 to x2, such that they are adjacent, and µ(y1) = µ(y2)
but η(y1) 6= η(y2). Let e be the edge connecting them. It must have a pre-image
in either R or G (or both). Suppose e has a pre-image e′ in R with the pre-images
of y1 and y2 being y′1 and y′2 respectively. Then, if e is contracted in S it holds
that e′ is contracted in M , and hence µR(y′1) = µR(y′2). But then, f ◦ µR = η ◦ ψ′1
implies that η(y1) = η(y2), which leads us to a contradiction. Now, suppose e has a
pre-image e′′ in G instead of R. If e′′ does not have a pre-image in L, then we arrive
at a contradiction by a similar argument as before. On the other hand, if e′′ has a
pre-image in L, then e must have a pre-image in R (since H is a pushout), hence the
previous argument applies. Hence, such x1, x2 cannot exist, and η′ is well-defined.

This gives us an η′ : S → G such that η′◦µ = η. This implies f ◦µR = (η◦µ)◦ψ′1
and (g ◦ µG) = (η ◦ µ) ◦ ψ′2. Now η and therefore η′ ◦ µ is the unique morphism
with this property. Since µ is fixed and surjective, this means that η′ is the unique
morphism such that f = ϕ1 ◦ η′ and g = ϕ2 ◦ η′. Thus, the following diagram is a
pushout.

L
µR◦ψ2�

µG◦ψ1
�

M

ϕ1

�

X ϕ2

�
S

Further, ϕ1 and µG ◦ ψ1 are both total, and µG ◦ ψ1 is conflict-free with respect to
ψ2. ut
Theorem 18. The set generated by pb(S) is a pred-basis of S.

Proof. Let Z be a member of ↑Pred(↑S). Then, there exists G ∈ Pred(↑S) and G
is a minor of Z. Hence there is a rule r : L ⇀ R which can be applied to G to get
some H ∈↑S, i.e., S is a minor of H. Hence we have the following situation, where
m is a conflict-free match (wrt. r):

L

m

��

r �
R

��
Z

� // G
�
H

� µ // S

18

Now, by Lemma 17 we can construct minors of R and G (denoted by M and X)
such that the following is a pushout (with µl ◦m total and conflict-free wrt. r and
m′ total):

L
r �

m

��

R

��

� µR // M

m′

��

G
�

_
µl

��

H �
µ

 BBBBBBBB

X
�
S

Hence X is a pushout complement for which the match is conflict-free wrt. r. The
procedure pb(S) as described above computes the minimal pushout complements
with such properties. Hence there exists X ′ ∈ pb(S) with X ′ ≤ X ≤ G ≤ Z.

This entire argument holds for every such Z, which implies that pb(s) generates
a suitable pred-basis. ut

Lemma 19. Let L and L̃ be graphs, ϕ1 : L ⇀ L̃ be an inverse injection, and
ψ2 : L̃→ X̃ be a total morphism. Now construct a specific pushout complement X ′

with morphisms ψ′1:L→ X ′, ϕ′2:X ′ ⇀ X̃ as follows:

1. Take a copy of the graph X̃, and let ψ′1 be ψ2 ◦ ϕ1. The morphism ϕ′2 is the
identity.

2. Let Y be the set of elements of L the image of which is undefined under ϕ1.
Add a copy of Y to this copy of X̃, and extend ψ′1 by mapping Y into this set.
Furthermore ϕ′2 is undefined on all elements of the copy of Y .

3. Now merge these new elements (originally contained in Y) in all possible com-
binations, i.e., factor through all appropriate8 equivalences. The morphisms ψ′1
and ϕ′2 are modified accordingly.

The set of graphs obtained in this way is denoted by P. Each
element X ′ of P is a pushout complement of ϕ1, ψ2 and the cor-
responding morphisms ψ′1:L→ X ′ are total. Any other pushout
complement X where ψ1 : L→ X is total (see diagram on the
right) has some graph X ′ ∈ P as a minor.

L

ψ1

��

ϕ1 �
L̃

ψ2

��
X

ϕ2 �
X̃

Finally, if ψ1:L → X is conflict-free wrt. to a rule r : L ⇀ R, then there
exists a pushout complement X ′ ∈ P with ψ′1:L→ X ′ conflict-free wrt. r, such that
X ′ ≤ X.

Proof. First, it is clear that the graphs produced by the above construction will in
fact be pushout complements. Also, ψ′1 will be total.

Let X be any pushout complement with ψ1 total. Since ϕ1 is an inverse injection
and ψ1, ψ2 are total, ϕ2 must also be an inverse injection. So the entire graph X̃
has a pre-image in X, or we can say that X contains an “exact copy” of X̃.

Now, if v is a node in X, then either it belongs to the copy of X̃, or if not, it
has a pre-image in Y under ψ1. Similarly for an edge e in X, either e is in the copy
of X̃, or it has at least one endpoint with a pre-image in x.

This means that X must be of the following form: it must contain an exact copy
of X̃, and images of all elements in Y (since ψ1 must be total). An element in the
copy of X̃ cannot have a preimage in Y under ψ1 since otherwise ψ2 would not be
total. But the elements of Y may be be merged with each other in any fashion. It
cannot contain any other nodes, but it may contain any number of additional edges,
so long as at least one endpoint of these edges lies outside the copy of X̃.
8 Here “appropriate” means that whenever two edges are in the equivalence relation, all

their adjacent nodes must be pairwise equivalent.

19

For any such X, we can delete these extra edges, and we will obtain a minor X ′

of X, which is still a pushout complement. Since this minor contains only a copy of
X̃ and extra elements from Y , it can be obtained by the above construction. Thus
the above construction allows us to compute all the minimal pushout complements.

Finally, whenever ψ1 is conflict-free wrt. r, we can find a matching X ′ for which
ψ′1:L → X ′ is also conflict-free, since the minor morphism X 7→ X ′ only deletes
edges, but never contracts them. So ψ′1 must be conflict-free whenever ψ1 is. ut

Proposition 20. Let r:L ⇀ R be a fixed rule. Furthermore let L, M and S be
graphs, with a partial morphism ϕ1 : L ⇀ M and a total morphism ψ2 : M → S.
Then, if we apply the following procedure we only construct pushout complements
X ′ of ϕ1, ψ2 and any other pushout complement X (with ψ1:L → X where ψ1 is
total and conflict-free wrt. r) has one of them as a minor.

1. Split ϕ1 into two morphisms as follows: let ϕ′1 : L ⇀ dom(ϕ1) be an inverse
injection and let ϕ′′1 : dom(ϕ1)→M be total.

2. Now consider the total morphisms ϕ′′1 : dom(ϕ1) → M , and ψ2 : M → S.
Construct all their pushout complements as usual for total morphisms.9

3. Let X̃ be any such pushout complement with η: dom(ϕ1)→ X̃.
4. For ϕ′1, η use the construction of Lemma 19 in order to obtain the minimal

pushout complements X ′ (with total and conflict-free ψ′1).
5. Finally, from all such pushout complements X ′ take the minimal ones.

The situation is depicted in the diagram below.

L
ϕ′

1 �

ψ′
1��

dom(ϕ1)
ϕ′′

1 //

η
��

M

ψ2
��

X ′
�
X̃ // S

Proof. Since both squares in the diagram above are pushouts (the left square by
Lemma 19, the right square by construction), the outer square must be a pushout
and hence X ′ is a pushout complement of ϕ1, ψ2.

Now take any pushout complement X such that ψ1:L→ X is total and conflict-
free wrt. r. The situation is as depicted below on the left:

L
ϕ′

1 �

ψ1

��

dom(ϕ1)
ϕ′′

1 // M

ψ2

��
X

�
S

L
ϕ′

1 �

ψ1

��

dom(ϕ1)
ϕ′′

1 //

η

��

M

ψ2

��
X

�
X̃ // S

As shown above on the right we can now split the pushout leading to two pushout
diagrams, where X̃ is one of the pushout complements of ϕ′′1 , ψ2 computed above.
Hence by Lemma 19 the graph X must have one of the constructed graphs X ′ as a
minor. ut

B Pushout Properties

We shortly summarize several properties of pushouts which hold in any category
and which are used in the proofs.
9 We do not describe this construction here, but it is well-known that there are only

finitely many such pushout complements and that they can be constructed effectively.

20

If in the diagram below both squares (consisting of morphisms ϕ1, ψ1, ψ3, ϕ2

and ϕ2, ψ2, ψ4, ϕ3) are pushouts, then the outer rectangle (consisting of ϕ1, ψ2 ◦
ψ1, ϕ3, ψ4 ◦ ψ3, ϕ3) is also a pushout.

A

ϕ1

��

ψ1 // B

ϕ2

��

ψ2 // C

ϕ3

��
D

ψ3

// E
ψ4

// F

If the rectangle below (consisting of morphisms ϕ1, ψ2 ◦ ψ1, ψ, ϕ3) is a pushout,
then there is a unique way to factorize ψ into ψ = ψ3 ◦ ψ4 such that the rectangle
splits into two pushout squares as shown above.

A

ϕ1

��

ψ1 // B
ψ2 // C

ϕ3

��
D

ψ
// F

Finally, an important tool in proofs is the so-called “mediating morphism” which
uniquely connects a pushout with another commuting square. In Definition 8 this
morphism is denoted by η.

21

